Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of the Internet Platform in Monitoring Chinese Public Attention to the Outbreak of COVID-19

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          The internet data is an essential tool for reflecting public attention to hot issues. This study aimed to use the Baidu Index (BDI) and Sina Micro Index (SMI) to confirm correlation between COVID-19 case data and Chinese online data (public attention). This could verify the effect of online data on early warning of public health events, which will enable us to respond in a more timely and effective manner.

          Methods

          Spearman correlation was used to check the consistency of BDI and SMI. Time lag cross-correlation analysis of BDI, SMI and six case-related indicators and multiple linear regression prediction were performed to explore the correlation between public concern and the actual epidemic.

          Results

          The public's usage trend of the Baidu search engine and Sina Weibo was consistent during the COVID-19 outbreak. BDI, SMI and COVID-19 indicators had significant advance or lag effects, among which SMI and six indicators all had advance effects while BDI only had advance effects with new confirmed cases and new death cases. But compared with the SMI, the BDI was more closely related to the epidemic severity. Notably, the prediction model constructed by BDI and SMI can well fit new confirmed cases and new death cases.

          Conclusions

          The confirmed associations between the public's attention to the outbreak of COVID and the trend of epidemic outbreaks implied valuable insights into effective mechanisms of crisis response. In response to public health emergencies, people can through the information recommendation functions of social media and search engines (such as Weibo hot search and Baidu homepage recommendation) to raise awareness of available disease prevention and treatment, health services, and policy change.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Detecting influenza epidemics using search engine query data.

          Seasonal influenza epidemics are a major public health concern, causing tens of millions of respiratory illnesses and 250,000 to 500,000 deaths worldwide each year. In addition to seasonal influenza, a new strain of influenza virus against which no previous immunity exists and that demonstrates human-to-human transmission could result in a pandemic with millions of fatalities. Early detection of disease activity, when followed by a rapid response, can reduce the impact of both seasonal and pandemic influenza. One way to improve early detection is to monitor health-seeking behaviour in the form of queries to online search engines, which are submitted by millions of users around the world each day. Here we present a method of analysing large numbers of Google search queries to track influenza-like illness in a population. Because the relative frequency of certain queries is highly correlated with the percentage of physician visits in which a patient presents with influenza-like symptoms, we can accurately estimate the current level of weekly influenza activity in each region of the United States, with a reporting lag of about one day. This approach may make it possible to use search queries to detect influenza epidemics in areas with a large population of web search users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Infodemiology and Infoveillance: Framework for an Emerging Set of Public Health Informatics Methods to Analyze Search, Communication and Publication Behavior on the Internet

            (2009)
            Infodemiology can be defined as the science of distribution and determinants of information in an electronic medium, specifically the Internet, or in a population, with the ultimate aim to inform public health and public policy. Infodemiology data can be collected and analyzed in near real time. Examples for infodemiology applications include: the analysis of queries from Internet search engines to predict disease outbreaks (eg. influenza); monitoring peoples' status updates on microblogs such as Twitter for syndromic surveillance; detecting and quantifying disparities in health information availability; identifying and monitoring of public health relevant publications on the Internet (eg. anti-vaccination sites, but also news articles or expert-curated outbreak reports); automated tools to measure information diffusion and knowledge translation, and tracking the effectiveness of health marketing campaigns. Moreover, analyzing how people search and navigate the Internet for health-related information, as well as how they communicate and share this information, can provide valuable insights into health-related behavior of populations. Seven years after the infodemiology concept was first introduced, this paper revisits the emerging fields of infodemiology and infoveillance and proposes an expanded framework, introducing some basic metrics such as information prevalence, concept occurrence ratios, and information incidence. The framework distinguishes supply-based applications (analyzing what is being published on the Internet, eg. on Web sites, newsgroups, blogs, microblogs and social media) from demand-based methods (search and navigation behavior), and further distinguishes passive from active infoveillance methods. Infodemiology metrics follow population health relevant events or predict them. Thus, these metrics and methods are potentially useful for public health practice and research, and should be further developed and standardized.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Using internet searches for influenza surveillance.

              The Internet is an important source of health information. Thus, the frequency of Internet searches may provide information regarding infectious disease activity. As an example, we examined the relationship between searches for influenza and actual influenza occurrence. Using search queries from the Yahoo! search engine ( http://search.yahoo.com ) from March 2004 through May 2008, we counted daily unique queries originating in the United States that contained influenza-related search terms. Counts were divided by the total number of searches, and the resulting daily fraction of searches was averaged over the week. We estimated linear models, using searches with 1-10-week lead times as explanatory variables to predict the percentage of cultures positive for influenza and deaths attributable to pneumonia and influenza in the United States. With use of the frequency of searches, our models predicted an increase in cultures positive for influenza 1-3 weeks in advance of when they occurred (P < .001), and similar models predicted an increase in mortality attributable to pneumonia and influenza up to 5 weeks in advance (P < .001). Search-term surveillance may provide an additional tool for disease surveillance.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Public Health
                Front Public Health
                Front. Public Health
                Frontiers in Public Health
                Frontiers Media S.A.
                2296-2565
                28 January 2022
                2021
                28 January 2022
                : 9
                : 755530
                Affiliations
                [1] 1School of Public Health, Capital Medical University , Beijing, China
                [2] 2Department of Outpatient, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University , Beijing, China
                [3] 3School of Public Administration and Policy, Renmin University of China , Beijing, China
                Author notes

                Edited by: Susan Christina Welburn, University of Edinburgh, United Kingdom

                Reviewed by: Jianmin Jiang, Zhejiang Center for Disease Control and Prevention, China; Changjing Zhuge, Beijing University of Technology, China

                *Correspondence: Rui Guo guorui@ 123456ccmu.edu.cn

                This article was submitted to Infectious Diseases - Surveillance, Prevention and Treatment, a section of the journal Frontiers in Public Health

                †These authors have contributed equally to this work and share first authorship

                ‡These authors have contributed equally to this work and share last authorship

                Article
                10.3389/fpubh.2021.755530
                8831856
                35155335
                5fc2804d-34df-4d53-b6f1-b8305dfc44ef
                Copyright © 2022 Gong, Hou, Han, Liang and Guo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 August 2021
                : 24 December 2021
                Page count
                Figures: 3, Tables: 3, Equations: 0, References: 45, Pages: 8, Words: 5895
                Funding
                Funded by: National Natural Science Foundation of China-China Academy of General Technology Joint Fund for Basic Research, doi 10.13039/501100019492;
                Categories
                Public Health
                Original Research

                covid-19,internet surveillance,baidu index,sina micro index,epidemic monitoring

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content82

                Cited by6

                Most referenced authors325