5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Towards Multimodal Human-Robot Interaction to Enhance Active Participation of Users in Gait Rehabilitation.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Robotic exoskeletons for physical rehabilitation have been utilized for retraining patients suffering from paraplegia and enhancing motor recovery in recent years. However, users are not voluntarily involved in most systems. This work aims to develop a locomotion trainer with multiple gait patterns, which can be controlled by the active motion intention of users. A multimodal human-robot interaction (HRI) system is established to enhance subject's active participation during gait rehabilitation, which includes cognitive human-robot interaction (cHRI) and physical human-robot interaction (pHRI). The cHRI adopts brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP). The pHRI is realized via admittance control based on electromyography (EMG). A central pattern generator (CPG) is utilized to produce rhythmic and continuous lower joint trajectories, and its state variables are regulated by cHRI and pHRI. A custom-made leg exoskeleton prototype with the proposed multimodal HRI is tested on healthy subjects and stroke patients. The results show that voluntary and active participation can be effectively involved to achieve various assistive gait patterns.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Central pattern generators for locomotion control in animals and robots: a review.

          The problem of controlling locomotion is an area in which neuroscience and robotics can fruitfully interact. In this article, I will review research carried out on locomotor central pattern generators (CPGs), i.e. neural circuits capable of producing coordinated patterns of high-dimensional rhythmic output signals while receiving only simple, low-dimensional, input signals. The review will first cover neurobiological observations concerning locomotor CPGs and their numerical modelling, with a special focus on vertebrates. It will then cover how CPG models implemented as neural networks or systems of coupled oscillators can be used in robotics for controlling the locomotion of articulated robots. The review also presents how robots can be used as scientific tools to obtain a better understanding of the functioning of biological CPGs. Finally, various methods for designing CPGs to control specific modes of locomotion will be briefly reviewed. In this process, I will discuss different types of CPG models, the pros and cons of using CPGs with robots, and the pros and cons of using robots as scientific tools. Open research topics both in biology and in robotics will also be discussed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Motor learning elicited by voluntary drive.

              Motor training consisting of voluntary movements leads to performance improvements and results in characteristic reorganizational changes in the motor cortex. It has been proposed that repetition of passively elicited movements could also lead to improvements in motor performance. In this study, we compared behavioural gains, changes in functional MRI (fMRI) activation in the contralateral primary motor cortex (cM1) and in motor cortex excitability measured with transcranial magnetic stimulation (TMS) after a 30 min training period of either voluntarily (active) or passively (passive) induced wrist movements, when alertness and kinematic aspects of training were controlled. During active training, subjects were instructed to perform voluntary wrist flexion-extension movements of a specified duration (target window 174-186 ms) in an articulated splint. Passive training consisted of wrist flexion- extension movements elicited by a torque motor, of the same amplitude and duration range as in the active task. fMRI activation and TMS parameters of motor cortex excitability were measured before and after each training type. Motor performance, measured as the number of movements that hit the target window duration, was significantly better after active than after passive training. Both active and passive movements performed during fMRI measurements activated cM1. Active training led to more prominent increases in (i) fMRI activation of cM1; (ii) recruitment curves (TMS); and (iii) intracortical facilitation (TMS) than passive training. Therefore, a short period of active motor training is more effective than passive motor training in eliciting performance improvements and cortical reorganization. This result is consistent with the concept of a pivotal role for voluntary drive in motor learning and neurorehabilitation.
                Bookmark

                Author and article information

                Journal
                IEEE Trans Neural Syst Rehabil Eng
                IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
                Institute of Electrical and Electronics Engineers (IEEE)
                1558-0210
                1534-4320
                May 11 2017
                Article
                10.1109/TNSRE.2017.2703586
                28504943
                5f91f28a-4704-4aaf-821f-9d123931d8fc
                History

                Comments

                Comment on this article