60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioactive flavonoids in medicinal plants: Structure, activity and biological fate

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical Abstract

          Abstract

          Flavonoids, a class of polyphenol secondary metabolites, are presented broadly in plants and diets. They are believed to have various bioactive effects including anti-viral, anti-inflammatory, cardioprotective, anti-diabetic, anti-cancer, anti-aging, etc. Their basic structures consist of C 6—C 3—C 6 rings with different substitution patterns to produce a series of subclass compounds, and correlations between chemical structures and bioactivities have been studied before. Given their poor bioavailability, however, information about associations between structure and biological fate is limited and urgently needed. This review therefore attempts to bring some order into relationships between structure, activity as well as pharmacokinetics of bioactive flavonoids.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroinflammation: modulation by flavonoids and mechanisms of action.

          Neuroinflammatory processes are known to contribute to the cascade of events culminating in the neuronal damage that underpins neurodegenerative disorders such as Parkinson's and Alzheimer's disease. Recently, there has been much interest in the potential neuroprotective effects of flavonoids, a group of plant secondary metabolites known to have diverse biological activity in vivo. With respect to the brain, flavonoids, such as those found in cocoa, tea, berries and citrus, have been shown to be highly effective in preventing age-related cognitive decline and neurodegeneration in both animals and humans. Evidence suggests that flavonoids may express such ability through a multitude of physiological functions, including an ability to modulate the brains immune system. This review will highlight the evidence for their potential to inhibit neuroinflammation through an attenuation of microglial activation and associated cytokine release, iNOS expression, nitric oxide production and NADPH oxidase activity. We will also detail the current evidence indicting that their regulation of these immune events appear to be mediated by their actions on intracellular signaling pathways, including the nuclear factor-κB (NF-κB) cascade and mitogen-activated protein kinase (MAPK) pathway. As such, flavonoids represent important precursor molecules in the quest to develop of a new generation of drugs capable of counteracting neuroinflammation and neurodegenerative disease. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice.

            Licorice, the roots and rhizomes of several Glycyrrhiza species (Leguminosae), is an important natural sweetening agent and a widely used herbal medicine. In this work, six flavonoids, 5-(1,1-dimethylallyl)-3,4,4'-trihydroxy-2-methoxychalcone (1), licochalcone B (2), licochalcone A (3), echinatin (4), glycycoumarin (5) and glyurallin B (6), were isolated from the extracts of licorice (Glycyrrhiza inflata and Glycyrrhiza uralensis). Their structures were elucidated using various spectroscopic methods. To our knowledge, compound 1 was isolated from natural plants for the first time. All the isolates were tested by antioxidant and anti-inflammatory assays. Compounds 2, 4 and 5 showed strong scavenging activity toward the ABTS(+) radical, and compounds 1, 2, 3, 5 and 6 exhibited potent inhibition of lipid peroxidation in rat liver microsomes compared with the reference controls. Compounds 1-4 dose-dependently inhibited LPS induced reactive oxygen species (ROS) production in RAW 264.7 cells. Furthermore, compounds 1-5 were demonstrated to inhibit the production of nitric oxide (NO), interleukin-6 (IL-6) and prostaglandin E2 (PGE2) in LPS-induced macrophage cells. Moreover, the contents of the six compounds, in different Glycyrrhiza species, were quantified by HPLC-MS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic engineering of flavonoids in plants and microorganisms.

              Over 9,000 flavonoid compounds have been found in various plants, comprising one of the largest families of natural products. Flavonoids are an essential factor in plant interactions with the environment, often serving as the first line of defense against UV irradiation and pathogen attacks. Flavonoids are also major nutritional compounds in foods and beverages, with demonstrated health benefits. Some flavonoids are potent antioxidants, and specific flavonoid compounds are beneficial in many physiological and pharmacological processes. Therefore, engineering of flavonoid biosynthesis in plants or in microorganisms has significant scientific and economical importance. Construction of biosynthetic pathways in heterologous systems offers promising results for large-scale flavonoid production by fermentation or bioconversion. Genomics and metabolomics now offer unprecedented tools for detailed understanding of the engineered transgenic organism and for developing novel technologies to further increase flavonoid production yields. We summarize some of the recent metabolic engineering strategies in plants and microorganisms, with a focus on applications of metabolic flux analysis. We are confident that these engineering approaches will lead to successful industrial flavonoid production in the near future.
                Bookmark

                Author and article information

                Contributors
                Journal
                Asian J Pharm Sci
                Asian J Pharm Sci
                Asian Journal of Pharmaceutical Sciences
                Shenyang Pharmaceutical University
                1818-0876
                2221-285X
                15 August 2017
                January 2018
                15 August 2017
                : 13
                : 1
                : 12-23
                Affiliations
                School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
                Author notes
                [* ]Corresponding author. School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China Tel: +86 24 23986012. bikaishun@ 123456yahoo.com
                Article
                S1818-0876(17)30194-0
                10.1016/j.ajps.2017.08.004
                7032191
                32104374
                5f91d203-c2af-45a5-9138-eef21d76875d
                © 2018 Shenyang Pharmaceutical University. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 13 March 2017
                : 30 May 2017
                : 10 August 2017
                Categories
                Review Article

                flavonoid,activity,structure,pharmacokinetics,bioavailability

                Comments

                Comment on this article