10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Surface-enhanced Raman spectroscopy

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references178

          • Record: found
          • Abstract: not found
          • Article: not found

          Adsorption and surface-enhanced Raman of dyes on silver and gold sols

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Raman spectra of pyridine adsorbed at a silver electrode

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Localized surface plasmon resonance spectroscopy and sensing.

              Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Reviews Methods Primers
                Nat Rev Methods Primers
                Springer Science and Business Media LLC
                2662-8449
                December 2021
                January 06 2022
                December 2021
                : 1
                : 1
                Article
                10.1038/s43586-021-00083-6
                5f862f59-6d41-42c1-8892-42eebf29d4a1
                © 2021

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article