18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of a viability digital PCR protocol for the selective detection and quantification of live Erwinia amylovora cells in cankers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fire blight is a devastating disease of apple and pear caused by the bacterium Erwinia amylovora. One of its main symptoms is canker formation on perennial tissues which may lead to the death of limbs and/or the entire tree. E. amylovora overwinters in cankers which play an important role in initiating fire blight epidemics. However, knowledge of pathogen biology in cankers is scarce, in part due to limitations of classical microbiology methods and the inability of most molecular techniques to distinguish live from dead cells. In this work, a viability digital PCR (v-dPCR) protocol using propidium monoazide (PMA) was developed, allowing for the first time the selective detection and absolute quantification of E. amylovora live cells in apple and pear cankers collected in two time periods. Some key factors affecting the v-dPCR performance were the maceration buffer composition, the target DNA amplicon length, the thermal cycle number and the use of sodium dodecyl sulfate or PMA enhancer for Gram-negative bacteria to improve the effect of PMA. In the future, this methodology could shed light on E. amylovora population dynamics in cankers and provide clues on the effect of management practices, host cultivar, host water/nutritional status, etc., on bacterial survival.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification.

          The ideal scenario in most applications of microbial diagnostics is that only viable cells are detected. Bacteria were traditionally considered viable when they could be cultured, whereas today's viability concept tends to be alternatively based on the presence of some form of metabolic activity, a positive energy status, responsiveness, detection of RNA transcripts that tend to degrade rapidly after cell death, or of an intact membrane. The latter criterion, although conservative, was the focus of one of the most successful recent approaches to detect viable cells in combination with DNA amplification techniques. The technology is based on sample treatment with the photoactivatable, and cell membrane impermeant, nucleic acid intercalating dyes ethidium monoazide (EMA) or propidium monoazide (PMA) followed by light exposure prior to extraction of DNA and amplification. Light activation of DNA-bound dye molecules results in irreversible DNA modification and subsequent inhibition of its amplification. Sample pretreatment with viability dyes has so far been mainly used in combination with PCR (leading to the term viability PCR, v-PCR), and increasingly with isothermal amplification method. The principle is not limited to bacteria, but has also successfully been applied to fungi, protozoa and viruses. Despite the success of the method, some practical limitations have been identified, especially when applied to environmental samples. In part they can be minimized by choice of experimental parameters and conditions adequate for a particular sample. This review summarizes current knowledge and presents aspects which are important when designing experiments employing viability dyes. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples

            Background Detection and quantification of plant pathogens in the presence of inhibitory substances can be a challenge especially with plant and environmental samples. Real-time quantitative PCR has enabled high-throughput detection and quantification of pathogens; however, its quantitative use is linked to standardized reference materials, and its sensitivity to inhibitors can lead to lower quantification accuracy. Droplet digital PCR has been proposed as a method to overcome these drawbacks. Its absolute quantification does not rely on standards and its tolerance to inhibitors has been demonstrated mostly in clinical samples. Such features would be of great use in agricultural and environmental fields, therefore our study compared the performance of droplet digital PCR method when challenged with inhibitors common to plant and environmental samples and compared it with quantitative PCR. Results Transfer of an existing Pepper mild mottle virus assay from reverse transcription real-time quantitative PCR to reverse transcription droplet digital PCR was straight forward. When challenged with complex matrices (seeds, plants, soil, wastewater) and selected purified inhibitors droplet digital PCR showed higher resilience to inhibition for the quantification of an RNA virus (Pepper mild mottle virus), compared to reverse transcription real-time quantitative PCR. Conclusions This study confirms the improved detection and quantification of the PMMoV RT-ddPCR in the presence of inhibitors that are commonly found in samples of seeds, plant material, soil, and wastewater. Together with absolute quantification, independent of standard reference materials, this makes droplet digital PCR a valuable tool for detection and quantification of pathogens in inhibition prone samples. Electronic supplementary material The online version of this article (doi:10.1186/s13007-014-0042-6) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Real-time PCR and its application for rapid plant disease diagnostics

                Bookmark

                Author and article information

                Contributors
                acimovic@cornell.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                8 August 2019
                8 August 2019
                2019
                : 9
                : 11530
                Affiliations
                ISNI 000000041936877X, GRID grid.5386.8, Plant Pathology and Plant-Microbe Biology Section, , Cornell University, Hudson Valley Research Laboratory, ; Highland, NY USA
                Author information
                http://orcid.org/0000-0002-0710-2339
                Article
                47976
                10.1038/s41598-019-47976-x
                6687816
                31395913
                5f7b5164-7db8-4f55-a6a5-e13efbdfd880
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 April 2019
                : 25 July 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                microbiology techniques,bacterial techniques and applications
                Uncategorized
                microbiology techniques, bacterial techniques and applications

                Comments

                Comment on this article