0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Autoencoder and Generative Adversarial Networks Approach for Multi-Omics Data Imbalanced Class Handling and Classification

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the relentless efforts in enhancing medical diagnostics, the integration of state-of-the-art machine learning methodologies has emerged as a promising research area. In molecular biology, there has been an explosion of data generated from multi-omics sequencing. The advent sequencing equipment can provide large number of complicated measurements per one experiment. Therefore, traditional statistical methods face challenging tasks when dealing with such high dimensional data. However, most of the information contained in these datasets is redundant or unrelated and can be effectively reduced to significantly fewer variables without losing much information. Dimensionality reduction techniques are mathematical procedures that allow for this reduction; they have largely been developed through statistics and machine learning disciplines. The other challenge in medical datasets is having an imbalanced number of samples in the classes, which leads to biased results in machine learning models. This study, focused on tackling these challenges in a neural network that incorporates autoencoder to extract latent space of the features, and Generative Adversarial Networks (GAN) to generate synthetic samples. Latent space is the reduced dimensional space that captures the meaningful features of the original data. Our model starts with feature selection to select the discriminative features before feeding them to the neural network. Then, the model predicts the outcome of cancer for different datasets. The proposed model outperformed other existing models by scoring accuracy of 95.09% for bladder cancer dataset and 88.82% for the breast cancer dataset.

          Related collections

          Author and article information

          Journal
          15 May 2024
          Article
          2405.09756
          5f7a9d18-12cc-48e5-9428-8e6571db0c88

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          cs.LG cs.NE q-bio.GN

          Neural & Evolutionary computing,Artificial intelligence,Genetics
          Neural & Evolutionary computing, Artificial intelligence, Genetics

          Comments

          Comment on this article