Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut Microbiota in Patients with Type 1 Narcolepsy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To explore the characteristics of gut microbiota and its relationship between clinical manifestations in patients with type 1 narcolepsy (NT1).

          Patients and Methods

          Scale and polysomnography were performed in 20 NT1 patients and 16 healthy controls (HC group) to evaluate the clinical characteristics of NT1. Illumina sequencing was performed on bacterial 16S ribosomal RNA gene using V3-V4 regions to compare the fecal microbiota in all subjects. Associations between clinical characteristics and gut microbiota were analyzed using partial correlation analysis.

          Results

          Compared with the HC group, the NT1 group had a significantly higher ESS score, longer total sleep time, increased wakefulness, decreased sleep efficiency, disturbance of sleep structure, shorter mean sleep latency, and increased sleep-onset REM periods (all P < 0.05). No differences in alpha and beta diversity were observed between the two groups. In contrast, there were significant differences at the level of class, order, family, and genus (all P < 0.05). LEfSe analysis showed that the relative abundance of Klebsiella in the NT1 group was higher than that in the HC group (P < 0.05), while the relative abundance of Blautia, Barnesiellaceae, Barnesiella, Phocea, Lactococcus, Coriobacteriia, Coriobacteriales, Ruminiclostridium_5 , and Bilophila were lower (all P < 0.05). Partial correlation analysis revealed that partial differential bacteria in the NT1 group were correlated with total sleep time, sleep efficiency, stage 1 sleep, arousal index, and sleep latency (all P < 0.05).

          Conclusion

          Our data revealed differences in intestinal flora structure between NT1 patients and the normal population, thus providing a theoretical basis for future microecological therapy for narcolepsy. However, future larger sample size studies and different study designs are needed to further clarify the possible pathogenesis and potential causality of intestinal flora in NT1 patients and explore the new treatment strategies.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Metagenomic biomarker discovery and explanation

          This study describes and validates a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities, which is a central problem to the study of metagenomics. We extensively validate our method on several microbiomes and a convenient online interface for the method is provided at http://huttenhower.sph.harvard.edu/lefse/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An obesity-associated gut microbiome with increased capacity for energy harvest.

            The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              A human gut microbial gene catalogue established by metagenomic sequencing.

              To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, approximately 150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.
                Bookmark

                Author and article information

                Journal
                Nat Sci Sleep
                Nat Sci Sleep
                nss
                Nature and Science of Sleep
                Dove
                1179-1608
                06 November 2021
                2021
                : 13
                : 2007-2018
                Affiliations
                [1 ]Department of Neurology, Henan Provincial People’s Hospital Affiliated to Henan University , Zhengzhou, Henan, People’s Republic of China
                [2 ]Microbiome Laboratory, Henan Provincial People’s Hospital , Zhengzhou, Henan, People’s Republic of China
                [3 ]Department of Neurology, Henan Provincial People’s Hospital Affiliated to Zhengzhou University , Zhengzhou, Henan, People’s Republic of China
                Author notes
                Correspondence: Hongju Zhang Department of Neurology, Henan Provincial People’s Hospital Affiliated to Henan University , Zhengzhou, Henan, People’s Republic of China Email hongjuz@sina.com
                Author information
                http://orcid.org/0000-0001-6784-6658
                Article
                330022
                10.2147/NSS.S330022
                8579944
                34785965
                5f775541-43b4-46d8-ab46-662811877eff
                © 2021 Zhang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 18 July 2021
                : 17 October 2021
                Page count
                Figures: 4, Tables: 7, References: 57, Pages: 12
                Funding
                Funded by: any funding agency in the public, commercial or profit-making sector;
                This research has not received a specific grant from any funding agency in the public, commercial or profit-making sector.
                Categories
                Original Research

                type 1 narcolepsy,gut microbiota,16srrna,high throughput sequencing

                Comments

                Comment on this article

                scite_
                19
                1
                9
                0
                Smart Citations
                19
                1
                9
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,217

                Cited by12

                Most referenced authors1,008