23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Phylogenetics of Aedes japonicus, a Disease Vector That Recently Invaded Western Europe, North America, and the Hawaiian Islands

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We used two mitochondrial loci (nicotinamide adenine dinucleotide dehydrogenase subunit 4 and cytochrome oxidase II) and a nuclear locus (28S-D2 spacer) for a total of 1337 bp to evaluate the relationships among the four subspecies of Aedes ( Finlaya) japonicus Theobald. Ae. j. japonicus was recently introduced into the United States and has been expanding rapidly. We also included in our analysis a morphologically very closely related species, Aedes ( Finlaya) koreicus Edwards, as well as three more distantly related species: Aedes ( Finlaya) togoi Theobald, Aedes ( Finlaya) hatorii Yamada, and Aedes ( Aedimorphus) vexans Meigen. We found that the four subspecies in the Ae. japonicus complex are genetically quite distinct but seem to form a monophyletic group that surprisingly also includes Ae. koreicus, suggesting the need for a taxonomic reconsideration of the group. We also found that the two southern subspecies are more closely related to each other than to any of the remaining subspecies or to Ae. koreicus and may indicate an ancient north-south split of the lineage. Considering the overlap between Ae. j. japonicus and Ae. koreicus, but the stronger association between Ae. koreicus and humans, we are surprised it also has not expanded from its original range. As a proactive reaction to this possibility, we designed and tested a DNA-based rapid assay to differentiate Ae. koreicus from some of the species with which it may be confused in the United States. These Aedes are putative vectors of several important viral encephalitides.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Critical review of the vector status of Aedes albopictus.

          N G Gratz (2004)
          The mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae), originally indigenous to South-east Asia, islands of the Western Pacific and Indian Ocean, has spread during recent decades to Africa, the mid-east, Europe and the Americas (north and south) after extending its range eastwards across Pacific islands during the early 20th century. The majority of introductions are apparently due to transportation of dormant eggs in tyres. Among public health authorities in the newly infested countries and those threatened with the introduction, there has been much concern that Ae. albopictus would lead to serious outbreaks of arbovirus diseases (Ae. albopictus is a competent vector for at least 22 arboviruses), notably dengue (all four serotypes) more commonly transmitted by Aedes (Stegomyia) aegypti (L.). Results of many laboratory studies have shown that many arboviruses are readily transmitted by Ae. albopictus to laboratory animals and birds, and have frequently been isolated from wild-caught mosquitoes of this species, particularly in the Americas. As Ae. albopictus continues to spread, displacing Ae. aegypti in some areas, and is anthropophilic throughout its range, it is important to review the literature and attempt to predict whether the medical risks are as great as have been expressed in scientific journals and the popular press. Examination of the extensive literature indicates that Ae. albopictus probably serves as a maintenance vector of dengue in rural areas of dengue-endemic countries of South-east Asia and Pacific islands. Also Ae. albopictus transmits dog heartworm Dirofilaria immitis (Leidy) (Spirurida: Onchocercidae) in South-east Asia, south-eastern U.S.A. and both D. immitis and Dirofilaria repens (Raillet & Henry) in Italy. Despite the frequent isolation of dengue viruses from wild-caught mosquitoes, there is no evidence that Ae. albopictus is an important urban vector of dengue, except in a limited number of countries where Ae. aegypti is absent, i.e. parts of China, the Seychelles, historically in Japan and most recently in Hawaii. Further research is needed on the dynamics of the interaction between Ae. albopictus and other Stegomyia species. Surveillance must also be maintained on the vectorial role of Ae. albopictus in countries endemic for dengue and other arboviruses (e.g. Chikungunya, EEE, Ross River, WNV, LaCrosse and other California group viruses), for which it would be competent and ecologically suited to serve as a bridge vector.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Invasions by insect vectors of human disease.

            Nonindigenous vectors that arrive, establish, and spread in new areas have fomented throughout recorded history epidemics of human diseases such as malaria, yellow fever, typhus, and plague. Although some vagile vectors, such as adults of black flies, biting midges, and tsetse flies, have dispersed into new habitats by flight or wind, human-aided transport is responsible for the arrival and spread of most invasive vectors, such as anthropophilic fleas, lice, kissing bugs, and mosquitoes. From the fifteenth century to the present, successive waves of invasion of the vector mosquitoes Aedes aegypti, the Culex pipiens Complex, and, most recently, Aedes albopictus have been facilitated by worldwide ship transport. Aircraft have been comparatively unimportant for the transport of mosquito invaders. Mosquito species that occupy transportable container habitats, such as water-holding automobile tires, have been especially successful as recent invaders. Propagule pressure, previous success, and adaptations to human habits appear to favor successful invasions by vectors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polytomies and Bayesian phylogenetic inference.

              Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short branch lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.
                Bookmark

                Author and article information

                Journal
                J Med Entomol
                J. Med. Entomol
                jme
                Journal of Medical Entomology
                Entomological Society of America
                0022-2585
                1938-2928
                July 2010
                01 July 2010
                01 July 2010
                : 47
                : 4
                : 527-535
                Affiliations
                [1 ]Center for Vector Biology, Rutgers University, 180 Jones Ave., New Brunswick, NJ 08901.
                [2 ]Walter Reed Biosystematics Unit, Division of Entomology (WRBU), Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD 20910-7500.
                [3 ]Department of Microbiology, Saga Medical School, Nabeshima 5-1-1, Saga 849-8501, Japan.
                [4 ]Laboratory of Medical Zoology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.
                [5 ]5th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, U.S. Army, APO AP 96205-5247, Republic of Korea.
                Author notes
                [6 ]Corresponding author, e-mail: dinafons@ 123456rci.rutgers.edu.
                Article
                10.1093/jmedent/47.4.527
                7027316
                20695267
                5f514e68-fb6f-4876-acad-d9825403d175
                © 2010 Entomological Society of America

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 28 October 2009
                : 22 February 2010
                Categories
                Article

                cytochrome oxidase ii,nicotinamide adenine dinucleotide dehydrogenase subunit 4,its-d2 spacer,aedes koreicus,ochlerotatus japonicus

                Comments

                Comment on this article