0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A high-resolution calving front data product for marine-terminating glaciers in Svalbard

      , , , , ,
      Earth System Science Data
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. The mass loss of glaciers outside the polar ice sheets has been accelerating during the past several decades and has been contributing to global sea-level rise. However, many of the mechanisms of this mass loss process are not well understood, especially the calving dynamics of marine-terminating glaciers, in part due to a lack of high-resolution calving front observations. Svalbard is an ideal site to study the climate sensitivity of glaciers as it is a region that has been undergoing amplified climate variability in both space and time compared to the global mean. Here we present a new high-resolution calving front dataset of 149 marine-terminating glaciers in Svalbard, comprising 124 919 glacier calving front positions during the period 1985–2023 (https://doi.org/10.5281/zenodo.10407266, Li et al., 2023). This dataset was generated using a novel automated deep-learning framework and multiple optical and SAR satellite images from Landsat, Terra-ASTER, Sentinel-2, and Sentinel-1 satellite missions. The overall calving front mapping uncertainty across Svalbard is 31 m. The newly derived calving front dataset agrees well with recent decadal calving front observations between 2000 and 2020 (Kochtitzky and Copland, 2022) and an annual calving front dataset between 2008 and 2022 (Moholdt et al., 2022). The calving fronts between our product and the latter deviate by 32 ± 65 m on average. The R2 of the glacier calving front change rates between these two products is 0.98, indicating an excellent match. Using this new calving front dataset, we identified widespread calving front retreats during the past four decades, across most regions in Svalbard except for a handful of glaciers draining the ice caps Vestfonna and Austfonna on Nordaustlandet. In addition, we identified complex patterns of glacier surging events overlaid with seasonal calving cycles. These data and findings provide insights into understanding glacier calving mechanisms and drivers. This new dataset can help improve estimates of glacier frontal ablation as a component of the integrated mass balance of marine-terminating glaciers.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          Xception: Deep Learning with Depthwise Separable Convolutions

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Processes and impacts of Arctic amplification: A research synthesis

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Randolph Glacier Inventory: a globally complete inventory of glaciers

                Bookmark

                Author and article information

                Contributors
                Journal
                Earth System Science Data
                Earth Syst. Sci. Data
                Copernicus GmbH
                1866-3516
                2024
                February 20 2024
                : 16
                : 2
                : 919-939
                Article
                10.5194/essd-16-919-2024
                5f46617a-ba3b-4719-8d28-65f0ed9b4c5f
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article