9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Host–microbiome interactions in nicotinamide mononucleotide (NMN) deamidation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nicotinamide adenine dinucleotide (NAD +) precursor nicotinamide mononucleotide (NMN) is a proposed therapy for age‐related disease, whereby it is assumed that NMN is incorporated into NAD + through the canonical recycling pathway. During oral delivery, NMN is exposed to the gut microbiome, which could modify the NAD + metabolome through enzyme activities not present in the mammalian host. We show that orally delivered NMN can undergo deamidation and incorporation in mammalian tissue via the de novo pathway, which is reduced in animals treated with antibiotics to ablate the gut microbiome. Antibiotics increased the availability of NAD + metabolites, suggesting the microbiome could be in competition with the host for dietary NAD + precursors. These findings highlight new interactions between NMN and the gut microbiome.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data

            Background The analysis of microbial communities through DNA sequencing brings many challenges: the integration of different types of data with methods from ecology, genetics, phylogenetics, multivariate statistics, visualization and testing. With the increased breadth of experimental designs now being pursued, project-specific statistical analyses are often needed, and these analyses are often difficult (or impossible) for peer researchers to independently reproduce. The vast majority of the requisite tools for performing these analyses reproducibly are already implemented in R and its extensions (packages), but with limited support for high throughput microbiome census data. Results Here we describe a software project, phyloseq, dedicated to the object-oriented representation and analysis of microbiome census data in R. It supports importing data from a variety of common formats, as well as many analysis techniques. These include calibration, filtering, subsetting, agglomeration, multi-table comparisons, diversity analysis, parallelized Fast UniFrac, ordination methods, and production of publication-quality graphics; all in a manner that is easy to document, share, and modify. We show how to apply functions from other R packages to phyloseq-represented data, illustrating the availability of a large number of open source analysis techniques. We discuss the use of phyloseq with tools for reproducible research, a practice common in other fields but still rare in the analysis of highly parallel microbiome census data. We have made available all of the materials necessary to completely reproduce the analysis and figures included in this article, an example of best practices for reproducible research. Conclusions The phyloseq project for R is a new open-source software package, freely available on the web from both GitHub and Bioconductor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mammalian sirtuins: biological insights and disease relevance.

              Aging is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as type II diabetes mellitus, neurodegenerative diseases, cancer, and cardiovascular disease. Historically, researchers have focused on investigating individual pathways in isolated organs as a strategy to identify the root cause of a disease, with hopes of designing better drugs. Studies of aging in yeast led to the discovery of a family of conserved enzymes known as the sirtuins, which affect multiple pathways that increase the life span and the overall health of organisms. Since the discovery of the first known mammalian sirtuin, SIRT1, 10 years ago, there have been major advances in our understanding of the enzymology of sirtuins, their regulation, and their ability to broadly improve mammalian physiology and health span. This review summarizes and discusses the advances of the past decade and the challenges that will confront the field in the coming years.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                FEBS Letters
                FEBS Letters
                Wiley
                0014-5793
                1873-3468
                September 2023
                August 09 2023
                September 2023
                : 597
                : 17
                : 2196-2220
                Affiliations
                [1 ] School of Biomedical Sciences UNSW Sydney NSW Australia
                [2 ] GeneHarbor (Hong Kong) Biotechnologies Limited Hong Kong Science Park China
                [3 ] School of Life Sciences The Chinese University of Hong Kong China
                [4 ] Jumpstart Fertility Pty Ltd Melbourne VIC Australia
                [5 ] Harvard Medical School Boston MA USA
                [6 ] School of Mathematics and Statistics The University of Sydney NSW Australia
                Article
                10.1002/1873-3468.14698
                37463842
                5f2551d9-eb0c-4380-9d83-beb290b780bd
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article