1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HS-GC-IMS and HS-SPME/GC-MS coupled with E-nose and E-tongue reveal the flavors of raw milk from different regions of China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Milk authentication requires identification of the origin and assessment of the aroma characteristics. In this study, we analyzed 24 raw milk samples from different regions of China by profiling volatile flavors using headspace solid phase microextraction-gas chromatography-mass spectrometry, headspace gas chromatography-ion mobility spectrometry, and intelligent sensory technology (E-tongue and E-nose). The flavor of raw milk in Southern and Northern China had evident differences based on the intelligent sensory technology. However, the differences among the samples from the northeast, northwest, and central regions were not significant. Correlations between milk origin and volatile compounds based on variable importance prediction > 1 and principal component analysis results revealed differential compounds including pyridine, nonanal, dodecane, furfural, 1-decene, octanoic acid, and 1,3,5,7-cyclooctatetraene. Our study findings provided a deeper understanding of the geographical differences in raw milk volatile compounds in China.

          Graphical abstract

          Highlights

          • Four methods wewre used to distinguish the origin of raw milk.

          • Key VOCs and taste properties were screened from raw milk.

          • Taste properties have more effective in distinguishing the origin of raw milk.

          • Potential markers for distinguishing the origin of raw milk were identified.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          Raw or heated cow milk consumption: Review of risks and benefits

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation.

            The aim of this study was to investigate the effects of different feeding systems on milk quality and composition. Fifty-four multiparous and primiparous Friesian lactating cows were divided into 3 groups (n=18) to study the effects of 3 feeding systems over a full lactation. Group 1 was housed indoors and offered a total mixed ration diet (TMR), group 2 was maintained outdoors on a perennial ryegrass pasture (referred to as grass), and group 3 was also grazed outdoors on a perennial ryegrass/white clover pasture (referred to as clover). Bulk milk samples were collected from each group at morning and afternoon milkings once weekly from March 11 to October 28 in 2015. Milk from pasture-fed cows (grass and clover) had significantly higher concentrations of fat, protein, true protein, and casein. The pasture feeding systems induced significantly higher concentrations of saturated fatty acids C11:0, C13:0, C15:0, C17:0, C23:0, and unsaturated fatty acids C18:2n-6 trans, C18:3n-3, C20:1, and C20:4n-6 and a greater than 2-fold increase in the conjugated linoleic acid C18:2 cis-9,trans-11 content of milk compared with that of the TMR feeding system. The TMR feeding system resulted in milks with increased concentrations of C16:0, C18:2n-6 cis, C18:3n-6 cis, C22:0 C22:1n-9, and C18:2 cis-10,trans-12. Principal component analysis of average fatty acid profiles showed clear separation of milks from the grazed pasture-based diets to that of a TMR system throughout lactation, offering further insight into the ability to verify pasture-derived milk by fatty acid profiling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Factors Influencing the Flavour of Bovine Milk and Cheese from Grass Based versus Non-Grass Based Milk Production Systems

              There has been a surge in interest in relation to differentiating dairy products derived from pasture versus confined systems. The impact of different forage types on the sensory properties of milk and cheese is complex due to the wide range of on farm and production factors that are potentially involved. The main effect of pasture diet on the sensory properties of bovine milk and cheese is increased yellow intensity correlated to β-carotene content, which is a possible biomarker for pasture derived dairy products. Pasture grazing also influences fat and fatty acid content which has been implicated with texture perception changes in milk and cheese and increased omega-3 fatty acids. Changes in polyunsaturated fatty acids in milk and cheese due to pasture diets has been suggested may increase susceptibility to lipid oxidation but does not seem to be an issue to due increased antioxidants and the reducing environment of cheese. It appears that pasture derived milk and cheese are easier to discern by trained panellists and consumers than milk derived from conserved or concentrate diets. However, milk pasteurization, inclusion of concentrate in pasture diets, cheese ripening time, have all been linked to reducing pasture dietary effects on sensory perception. Sensory evaluation studies of milk and cheese have, in general, found that untrained assessors who best represent consumers appear less able to discriminate sensory differences than trained assessors and that differences in visual and textural attributes are more likely to be realized than flavour attributes. This suggests that sensory differences due to diet are often subtle. Evidence supports the direct transfer of some volatiles via inhalation or ingestion but more so with indirect transfer post rumen metabolism dietary components. The impact of dietary volatiles on sensory perception of milk and dairy products obviously depends upon their concentration and odour activity, however very little quantitative studies have been carried out to date. Some studies have highlighted potential correlation of pasture with enhanced “barny” or “cowy” sensory attributes and subsequently linked these to accumulation of p-cresol from the metabolism of β-carotene and aromatic amino acids or possibly isoflavones in the rumen. p-Cresol has also been suggested as a potential biomarker for pasture derived dairy products. Other studies have linked terpenes to specific sensory properties in milk and cheese but this only appears to be relevant in milk and cheese derived from unseeded wild pasture where high concentrations accumulate, as their odour threshold is quite high. Toluene also a product of β-carotene metabolism has been identified as a potential biomarker for pasture derived dairy products but it has little impact on sensory perception due to its high odour threshold. Dimethyl sulfone has been linked to pasture diets and could influence sensory perception as its odour threshold is low. Other studies have linked the presence of maize and legumes (clover) in silage with adverse sensory impacts in milk and cheese. Considerably more research is required to define key dietary related impacts on the flavour of milk and cheese.
                Bookmark

                Author and article information

                Contributors
                Journal
                Curr Res Food Sci
                Curr Res Food Sci
                Current Research in Food Science
                Elsevier
                2665-9271
                30 December 2023
                2024
                30 December 2023
                : 8
                : 100673
                Affiliations
                [a ]Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
                [b ]Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, 100048, China
                Author notes
                []Corresponding author. Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. liuhuimin02@ 123456caas.cn
                Article
                S2665-9271(23)00241-1 100673
                10.1016/j.crfs.2023.100673
                10805766
                38269357
                5f1cca5a-7131-4ecb-a4bf-5c87c9ab976d
                © 2024 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 9 September 2023
                : 7 November 2023
                : 27 December 2023
                Categories
                Research Article

                hs-spme/gc-ms,flavor,gc-ims,raw milk,sensory
                hs-spme/gc-ms, flavor, gc-ims, raw milk, sensory

                Comments

                Comment on this article