31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IgA and the intestinal microbiota: the importance of being specific

      review-article
      1 , , 2 ,
      Mucosal Immunology
      Nature Publishing Group US

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Secretory IgA has long been a divisive molecule. Some immunologists point to the mild phenotype of IgA deficiency to justify ignoring it, while some consider its abundance and evolutionary history as grounds for its importance. Further, there is extensive and growing disagreement over the relative importance of affinity-matured, T cell-dependent IgA vs. “natural” and T cell-independent IgA in both microbiota and infection control. As with all good arguments, there is good data supporting different opinions. Here we revisit longstanding questions in IgA biology. We start the discussion from the question of intestinal IgA antigen specificity and critical definitions regarding IgA induction, specificity, and function. These definitions must then be tessellated with the cellular and molecular pathways shaping IgA responses, and the mechanisms by which IgA functions. On this basis we propose how IgA may contribute to the establishment and maintenance of beneficial interactions with the microbiota.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease.

          Specific members of the intestinal microbiota dramatically affect inflammatory bowel disease (IBD) in mice. In humans, however, identifying bacteria that preferentially affect disease susceptibility and severity remains a major challenge. Here, we used flow-cytometry-based bacterial cell sorting and 16S sequencing to characterize taxa-specific coating of the intestinal microbiota with immunoglobulin A (IgA-SEQ) and show that high IgA coating uniquely identifies colitogenic intestinal bacteria in a mouse model of microbiota-driven colitis. We then used IgA-SEQ and extensive anaerobic culturing of fecal bacteria from IBD patients to create personalized disease-associated gut microbiota culture collections with predefined levels of IgA coating. Using these collections, we found that intestinal bacteria selected on the basis of high coating with IgA conferred dramatic susceptibility to colitis in germ-free mice. Thus, our studies suggest that IgA coating identifies inflammatory commensals that preferentially drive intestinal disease. Targeted elimination of such bacteria may reduce, reverse, or even prevent disease development. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut inflammation provides a respiratory electron acceptor for Salmonella

            Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation reacted with endogenous, luminal sulphur compounds (thiosulfate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to utilize tetrathionate as an electron acceptor produced a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus, the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota.

              Vertebrates are essentially born germ-free but normally acquire a complex intestinal microbiota soon after birth. Most of these organisms are non-pathogenic to immunocompetent hosts; in fact, many are beneficial, supplying vitamins for host nutrition and filling the available microbiological niche to limit access and consequent pathology when pathogens are encountered. Thus, mammalian health depends on mutualism between host and flora. This is evident in inflammatory conditions such as inflammatory bowel disease, where aberrant responses to microbiota can result in host pathology. Studies with axenic (germ-free) or deliberately colonised animals have revealed that commensal organisms are required for the development of a fully functional immune system and affect many physiological processes within the host. Here, we describe the technical requirements for raising and maintaining axenic and gnotobiotic animals, and highlight the extreme diversity of changes within and beyond the immune system that occur when a germ-free animal is colonized with commensal bacteria.
                Bookmark

                Author and article information

                Contributors
                opabst@ukaachen.de
                emma.slack@hest.ethz.ch
                Journal
                Mucosal Immunol
                Mucosal Immunol
                Mucosal Immunology
                Nature Publishing Group US (New York )
                1933-0219
                1935-3456
                18 November 2019
                18 November 2019
                2020
                : 13
                : 1
                : 12-21
                Affiliations
                [1 ]ISNI 0000 0001 0728 696X, GRID grid.1957.a, Institute of Molecular Medicine, , RWTH Aachen University, ; Aachen, Germany
                [2 ]ISNI 0000 0001 2156 2780, GRID grid.5801.c, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, , ETH Zürich, ; Zürich, Switzerland
                Article
                227
                10.1038/s41385-019-0227-4
                6914667
                31740744
                5ee61ad8-4934-44da-b332-344f3b7efbaa
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 July 2019
                : 27 September 2019
                : 28 September 2019
                Categories
                Review Article
                Custom metadata
                © Society for Mucosal Immunology 2020

                Immunology
                Immunology

                Comments

                Comment on this article