22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Improved prediction of protein–protein interactions using novel negative samples, features, and an ensemble classifier

      , , , , ,
      Artificial Intelligence in Medicine
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Computational methods are employed in bioinformatics to predict protein-protein interactions (PPIs). PPIs and protein-protein non-interactions (PPNIs) display different levels of development, and the number of PPIs is considerably greater than that of PPNIs. This significant difference in the number of PPIs and PPNIs increases the cost of constructing a balanced dataset. PPIs can be classified as either physical or genetic. However, ready-made PPNI databases were proven only to have no physical interactions and were not proven to have no genetic interactions. Hence, ready-made PPNI databases contain false negative non-interactions. In this study, two PPNI datasets were artificially generated from a PPI database. In contrast to various traditional PPI feature extraction methods based on sequential information, two types of novel feature extraction methods were proposed. One is based on secondary structure information, and the other is based on the physicochemical properties of proteins. The experimental results of the RandomPairs dataset validate the efficiency and effectiveness of the proposed prediction model. These results reveal the potential of constructing a PPI negative dataset to reduce false negatives. Related datasets, tools, and source codes are accessible at http://lab.malab.cn/soft/PPIPre/PPIPre.html.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry.

          The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein-protein interaction maps has relied on the yeast two-hybrid system, which detects binary interactions through activation of reporter gene expression. With the advent of ultrasensitive mass spectrometric protein identification methods, it is feasible to identify directly protein complexes on a proteome-wide scale. Here we report, using the budding yeast Saccharomyces cerevisiae as a test case, an example of this approach, which we term high-throughput mass spectrometric protein complex identification (HMS-PCI). Beginning with 10% of predicted yeast proteins as baits, we detected 3,617 associated proteins covering 25% of the yeast proteome. Numerous protein complexes were identified, including many new interactions in various signalling pathways and in the DNA damage response. Comparison of the HMS-PCI data set with interactions reported in the literature revealed an average threefold higher success rate in detection of known complexes compared with large-scale two-hybrid studies. Given the high degree of connectivity observed in this study, even partial HMS-PCI coverage of complex proteomes, including that of humans, should allow comprehensive identification of cellular networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Scalable web services for the PSIPRED Protein Analysis Workbench

            Here, we present the new UCL Bioinformatics Group’s PSIPRED Protein Analysis Workbench. The Workbench unites all of our previously available analysis methods into a single web-based framework. The new web portal provides a greatly streamlined user interface with a number of new features to allow users to better explore their results. We offer a number of additional services to enable computationally scalable execution of our prediction methods; these include SOAP and XML-RPC web server access and new HADOOP packages. All software and services are available via the UCL Bioinformatics Group website at http://bioinf.cs.ucl.ac.uk/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence.

              Prediction of protein function is of significance in studying biological processes. One approach for function prediction is to classify a protein into functional family. Support vector machine (SVM) is a useful method for such classification, which may involve proteins with diverse sequence distribution. We have developed a web-based software, SVMProt, for SVM classification of a protein into functional family from its primary sequence. SVMProt classification system is trained from representative proteins of a number of functional families and seed proteins of Pfam curated protein families. It currently covers 54 functional families and additional families will be added in the near future. The computed accuracy for protein family classification is found to be in the range of 69.1-99.6%. SVMProt shows a certain degree of capability for the classification of distantly related proteins and homologous proteins of different function and thus may be used as a protein function prediction tool that complements sequence alignment methods. SVMProt can be accessed at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.
                Bookmark

                Author and article information

                Journal
                Artificial Intelligence in Medicine
                Artificial Intelligence in Medicine
                Elsevier BV
                09333657
                November 2017
                November 2017
                : 83
                :
                : 67-74
                Article
                10.1016/j.artmed.2017.03.001
                28320624
                5ed9098b-dadc-415f-9cee-d85b27ec8c65
                © 2017
                History

                Comments

                Comment on this article