2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Adding Salt to Foods and Risk of Cardiovascular Disease

      , , , ,
      Journal of the American College of Cardiology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age

          Cathie Sudlow and colleagues describe the UK Biobank, a large population-based prospective study, established to allow investigation of the genetic and non-genetic determinants of the diseases of middle and old age.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet

            The effect of dietary composition on blood pressure is a subject of public health importance. We studied the effect of different levels of dietary sodium, in conjunction with the Dietary Approaches to Stop Hypertension (DASH) diet, which is rich in vegetables, fruits, and low-fat dairy products, in persons with and in those without hypertension. A total of 412 participants were randomly assigned to eat either a control diet typical of intake in the United States or the DASH diet. Within the assigned diet, participants ate foods with high, intermediate, and low levels of sodium for 30 consecutive days each, in random order. Reducing the sodium intake from the high to the intermediate level reduced the systolic blood pressure by 2.1 mm Hg (P<0.001) during the control diet and by 1.3 mm Hg (P=0.03) during the DASH diet. Reducing the sodium intake from the intermediate to the low level caused additional reductions of 4.6 mm Hg during the control diet (P<0.001) and 1.7 mm Hg during the DASH diet (P<0.01). The effects of sodium were observed in participants with and in those without hypertension, blacks and those of other races, and women and men. The DASH diet was associated with a significantly lower systolic blood pressure at each sodium level; and the difference was greater with high sodium levels than with low ones. As compared with the control diet with a high sodium level, the DASH diet with a low sodium level led to a mean systolic blood pressure that was 7.1 mm Hg lower in participants without hypertension, and 11.5 mm Hg lower in participants with hypertension. The reduction of sodium intake to levels below the current recommendation of 100 mmol per day and the DASH diet both lower blood pressure substantially, with greater effects in combination than singly. Long-term health benefits will depend on the ability of people to make long-lasting dietary changes and the increased availability of lower-sodium foods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women.

              The Dietary Approaches to Stop Hypertension (DASH) diet has been shown to lower blood pressure, but little is known about its long-term effect on cardiovascular end points. Our objective was to assess the association between a DASH-style diet adherence score and risk of coronary heart disease (CHD) and stroke in women. In this prospective cohort study, diet was assessed 7 times during 24 years of follow-up (1980-2004) with validated food frequency questionnaires. A DASH score based on 8 food and nutrient components (fruits, vegetables, whole grains, nuts and legumes, low-fat dairy, red and processed meats, sweetened beverages, and sodium) was calculated. Lifestyle and medical information was collected biennially with a questionnaire. The Cox proportional hazard model was used to adjust for potential confounders. The study population comprised 88,517 female nurses aged 34 to 59 years without a history of cardiovascular disease or diabetes in 1980. The main outcome measures were the numbers of confirmed incident cases of nonfatal myocardial infarction, CHD death, and stroke. We documented 2129 cases of incident nonfatal myocardial infarction, 976 CHD deaths, and 2317 [corrected] cases of stroke. After adjustment for age, smoking, and other cardiovascular risk factors, the relative risks of CHD across quintiles of the DASH score were 1.0, 0.99, 0.86, 0.87, and 0.76 (95% confidence interval, 0.67-0.85) (P<.001 for trend). The magnitude of risk difference was similar for nonfatal myocardial infarction and fatal CHD. The DASH score was also significantly associated with lower risk of stroke (multivariate relative risks across quintiles of the DASH score were 1.0, 0.92, 0.91, 0.89, and 0.82) (P=.002 for trend). Cross-sectional analysis in a subgroup of women with blood samples showed that the DASH score was significantly associated with lower plasma levels of C-reactive protein (P=.008 for trend) and interleukin 6 (P=.04 for trend). Adherence to the DASH-style diet is associated with a lower risk of CHD and stroke among middle-aged women during 24 years of follow-up.
                Bookmark

                Author and article information

                Journal
                Journal of the American College of Cardiology
                Journal of the American College of Cardiology
                Elsevier BV
                07351097
                December 2022
                December 2022
                : 80
                : 23
                : 2157-2167
                Article
                10.1016/j.jacc.2022.09.039
                36456045
                5ec9056d-ab1c-4715-9f53-de9c8b59d53b
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article