30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The infection of microvascular endothelial cells with ExoU-producing Pseudomonas aeruginosa triggers the release of von Willebrand factor and platelet adhesion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An increased plasma concentration of von Willebrand factor (vWF) is detected in individuals with many infectious diseases and is accepted as a marker of endothelium activation and prothrombotic condition. To determine whether ExoU, a Pseudomonas aeruginosa cytotoxin with proinflammatory activity, enhances the release of vWF, microvascular endothelial cells were infected with the ExoU-producing PA103 P. aeruginosa strain or an exoU-deficient mutant. Significantly increased vWF concentrations were detected in conditioned medium and subendothelial extracellular matrix from cultures infected with the wild-type bacteria, as determined by enzyme-linked immunoassays. PA103-infected cells also released higher concentrations of procoagulant microparticles containing increased amounts of membrane-associated vWF, as determined by flow cytometric analyses of cell culture supernatants. Both flow cytometry and confocal microscopy showed that increased amounts of vWF were associated with cytoplasmic membranes from cells infected with the ExoU-producing bacteria. PA103-infected cultures exposed to platelet suspensions exhibited increased percentages of cells with platelet adhesion. Because no modulation of the vWF mRNA levels was detected by reverse transcription-polymerase chain reaction assays in PA103-infected cells, ExoU is likely to have induced the release of vWF from cytoplasmic stores rather than vWF gene transcription. Such release is likely to modify the thromboresistance of microvascular endothelial cells.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions.

          Thrombotic thrombocytopenic purpura (TTP) is a devastating thrombotic disorder caused by widespread microvascular thrombi composed of platelets and von Willebrand factor (VWF). The disorder is associated with a deficiency of the VWF-cleaving metalloprotease, ADAMTS-13, with consequent accumulation of ultralarge (UL) VWF multimers in the plasma. ULVWF multimers, unlike plasma forms of VWF, attach spontaneously to platelet GP Ibalpha, a component of the GP Ib-IX-V complex. We have found that ULVWF multimers secreted from stimulated endothelial cells (ECs) remained anchored to the endothelial surface where platelets and Chinese hamster ovary cells expressing the GP Ib-IX-V complex attached to form long beads-on-a-string structures in the presence of fluid shear stresses in both the venous (2.5 dyne/cm(2)) and arterial (20 and 50 dyne/cm(2)) ranges. Although measurement of the activity of the ADAMTS-13 VWF-cleaving metalloprotease in vitro requires prolonged incubation of the enzyme with VWF under nonphysiologic conditions, EC-derived ULVWF strings with attached platelets were cleaved within seconds to minutes in the presence of normal plasma (containing approximately 100% ADAMTS-13 activity) or in the presence of partially purified ADAMTS-13. By contrast, the strings persisted for the entire period of perfusion (10 minutes) in the presence of plasma from patients with TTP containing 0% to 10% ADAMTS-13 activity. These results suggest that cleavage of EC-derived ULVWF multimers by ADAMTS-13 is a rapid physiologic process that occurs on endothelial cell surfaces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation, endothelium, and coagulation in sepsis.

            Sepsis is a systemic response to infection, and symptoms are produced by host defense systems rather than by the invading pathogens. Amongst the most prominent features of sepsis, contributing significantly to its outcome, is activation of coagulation with concurrent down-regulation of anticoagulant systems and fibrinolysis. Inflammation-induced coagulation on its turn contributes to inflammation. Another important feature of sepsis, associated with key symptoms such as hypovolemia and hypotension, is endothelial dysfunction. Under normal conditions, the endothelium provides for an anticoagulant surface, a property that is lost in sepsis. In this review, data about the interplay between inflammation and coagulation in sepsis are summarized with a special focus on the influence of the endothelium on inflammation-induced coagulation and vice versa. Possible procoagulant properties of the endothelium are described, such as expression of tissue factor (TF) and von Willebrand factor and interaction with platelets. Possible procoagulant roles of microparticles, circulating endothelial cells and endothelial apoptosis, are also discussed. Moreover, the important roles of the endothelium in down-regulating the anticoagulants TF pathway inhibitor, antithrombin, and the protein C (PC) system and inhibition of fibrinolysis are discussed. The influence of coagulation on its turn on inflammation and the endothelium is described with a special focus on protease-activated receptors (PARs). We conclude that the relationship between endothelium and coagulation in sepsis is tight and that further research is needed, for example, to better understand the role of activated PC signaling via PAR-1, the role of the endothelial PC receptor herein, and the role of the glycocalyx.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The interactions between inflammation and coagulation.

              Inflammation initiates clotting, decreases the activity of natural anticoagulant mechanisms and impairs the fibrinolytic system. Inflammatory cytokines are the major mediators involved in coagulation activation. The natural anticoagulants function to dampen elevation of cytokine levels. Furthermore, components of the natural anticoagulant cascades, like thrombomodulin, minimise endothelial cell dysfunction by rendering the cells less responsive to inflammatory mediators, facilitate the neutralisation of some inflammatory mediators and decrease loss of endothelial barrier function. Hence, downregulation of anticoagulant pathways not only promotes thrombosis but also amplifies the inflammatory process. When the inflammation-coagulation interactions overwhelm the natural defence systems, catastrophic events occur, such as manifested in severe sepsis or inflammatory bowel disease.
                Bookmark

                Author and article information

                Journal
                mioc
                Memórias do Instituto Oswaldo Cruz
                Mem. Inst. Oswaldo Cruz
                Instituto Oswaldo Cruz, Ministério da Saúde (Rio de Janeiro, RJ, Brazil )
                0074-0276
                1678-8060
                September 2012
                : 107
                : 6
                : 728-734
                Affiliations
                [03] Rio de Janeiro RJ orgnameUniversidade do Estado do Rio de Janeiro orgdiv1Departamento de Biologia Celular Brasil
                [02] Rio de Janeiro RJ orgnameCentro Universitário Estadual da Zona Oeste orgdiv1Departamento de Ciências Biológicas e da Saúde Brasil
                [04] Rio de Janeiro RJ orgnameFiocruz orgdiv1Departamento de Ultra-Estrutura e Biologia Celular Brasil
                [01] Rio de Janeiro RJ orgnameUniversidade do Estado do Rio de Janeiro orgdiv1Departamento de Microbiologia e Imunologia Brasil
                Article
                S0074-02762012000600004 S0074-0276(12)10700604
                10.1590/S0074-02762012000600004
                22990960
                5ea0c946-b5f0-4996-8de6-2419075271cc

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 08 November 2011
                : 09 April 2012
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 37, Pages: 7
                Product

                SciELO Brazil

                Categories
                Articles

                Pseudomonas aeruginosa,von Willebrand factor,prothrombotic activity,microparticles

                Comments

                Comment on this article