1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioactive Components of Areca Nut: An Overview of Their Positive Impacts Targeting Different Organs

      , , , ,
      Nutrients
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Areca catechu L. is a widely cultivated tropical crop in Southeast Asia, and its fruit, areca nut, has been consumed as a traditional Chinese medicinal material for more than 10,000 years, although it has recently attracted widespread attention due to potential hazards. Areca nut holds a significant position in traditional medicine in many areas and ranks first among the four southern medicines in China. Numerous bioactive compounds have been identified in areca nuts, including alkaloids, polyphenols, polysaccharides, and fatty acids, which exhibit diverse bioactive functions, such as anti-bacterial, deworming, anti-viral, anti-oxidant, anti-inflammatory, and anti-tumor effects. Furthermore, they also display beneficial impacts targeting the nervous, digestive, and endocrine systems. This review summarizes the pharmacological functions and underlying mechanisms of the bioactive ingredients in areca nut. This helps to ascertain the beneficial components of areca nut, discover its medicinal potential, and guide the utilization of the areca nut.

          Related collections

          Most cited references193

          • Record: found
          • Abstract: found
          • Article: not found

          Alzheimer's disease

          In this Seminar, we highlight the main developments in the field of Alzheimer's disease. The most recent data indicate that, by 2050, the prevalence of dementia will double in Europe and triple worldwide, and that estimate is 3 times higher when based on a biological (rather than clinical) definition of Alzheimer's disease. The earliest phase of Alzheimer's disease (cellular phase) happens in parallel with accumulating amyloid β, inducing the spread of tau pathology. The risk of Alzheimer's disease is 60-80% dependent on heritable factors, with more than 40 Alzheimer's disease-associated genetic risk loci already identified, of which the APOE alleles have the strongest association with the disease. Novel biomarkers include PET scans and plasma assays for amyloid β and phosphorylated tau, which show great promise for clinical and research use. Multidomain lifestyle-based prevention trials suggest cognitive benefits in participants with increased risk of dementia. Lifestyle factors do not directly affect Alzheimer's disease pathology, but can still contribute to a positive outcome in individuals with Alzheimer's disease. Promising pharmacological treatments are poised at advanced stages of clinical trials and include anti-amyloid β, anti-tau, and anti-inflammatory strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Putting p53 in Context.

            TP53 is the most frequently mutated gene in human cancer. Functionally, p53 is activated by a host of stress stimuli and, in turn, governs an exquisitely complex anti-proliferative transcriptional program that touches upon a bewildering array of biological responses. Despite the many unveiled facets of the p53 network, a clear appreciation of how and in what contexts p53 exerts its diverse effects remains unclear. How can we interpret p53's disparate activities and the consequences of its dysfunction to understand how cell type, mutation profile, and epigenetic cell state dictate outcomes, and how might we restore its tumor-suppressive activities in cancer?
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms and regulation of cholesterol homeostasis

              Cholesterol homeostasis is vital for proper cellular and systemic functions. Disturbed cholesterol balance underlies not only cardiovascular disease but also an increasing number of other diseases such as neurodegenerative diseases and cancers. The cellular cholesterol level reflects the dynamic balance between biosynthesis, uptake, export and esterification - a process in which cholesterol is converted to neutral cholesteryl esters either for storage in lipid droplets or for secretion as constituents of lipoproteins. In this Review, we discuss the latest advances regarding how each of the four parts of cholesterol metabolism is executed and regulated. The key factors governing these pathways and the major mechanisms by which they respond to varying sterol levels are described. Finally, we discuss how these pathways function in a concerted manner to maintain cholesterol homeostasis.
                Bookmark

                Author and article information

                Contributors
                Journal
                NUTRHU
                Nutrients
                Nutrients
                MDPI AG
                2072-6643
                March 2024
                February 29 2024
                : 16
                : 5
                : 695
                Article
                10.3390/nu16050695
                38474823
                5e80880b-da84-44a7-a440-57699c2dcc6c
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article