4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A review on application of low-cost adsorbents for heavy metals removal from wastewater

      ,
      Materials Today: Proceedings
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Low-cost adsorbents for heavy metals uptake from contaminated water: a review.

          In this article, the technical feasibility of various low-cost adsorbents for heavy metal removal from contaminated water has been reviewed. Instead of using commercial activated carbon, researchers have worked on inexpensive materials, such as chitosan, zeolites, and other adsorbents, which have high adsorption capacity and are locally available. The results of their removal performance are compared to that of activated carbon and are presented in this study. It is evident from our literature survey of about 100 papers that low-cost adsorbents have demonstrated outstanding removal capabilities for certain metal ions as compared to activated carbon. Adsorbents that stand out for high adsorption capacities are chitosan (815, 273, 250 mg/g of Hg(2+), Cr(6+), and Cd(2+), respectively), zeolites (175 and 137 mg/g of Pb(2+) and Cd(2+), respectively), waste slurry (1030, 560, 540 mg/g of Pb(2+), Hg(2+), and Cr(6+), respectively), and lignin (1865 mg/g of Pb(2+)). These adsorbents are suitable for inorganic effluent treatment containing the metal ions mentioned previously. It is important to note that the adsorption capacities of the adsorbents presented in this paper vary, depending on the characteristics of the individual adsorbent, the extent of chemical modifications, and the concentration of adsorbate.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review.

              Heavy metal remediation of aqueous streams is of special concern due to recalcitrant and persistency of heavy metals in environment. Conventional treatment technologies for the removal of these toxic heavy metals are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal and/or recovery of metal ions from aqueous solutions. The major advantages of biosorption over conventional treatment methods include: low cost, high efficiency, minimization of chemical or biological sludge, regeneration of biosorbents and possibility of metal recovery. Cellulosic agricultural waste materials are an abundant source for significant metal biosorption. The functional groups present in agricultural waste biomass viz. acetamido, alcoholic, carbonyl, phenolic, amido, amino, sulphydryl groups etc. have affinity for heavy metal ions to form metal complexes or chelates. The mechanism of biosorption process includes chemisorption, complexation, adsorption on surface, diffusion through pores and ion exchange etc. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agricultural waste materials for heavy metal removal. Agricultural waste material being highly efficient, low cost and renewable source of biomass can be exploited for heavy metal remediation. Further these biosorbents can be modified for better efficiency and multiple reuses to enhance their applicability at industrial scale.
                Bookmark

                Author and article information

                Journal
                Materials Today: Proceedings
                Materials Today: Proceedings
                Elsevier BV
                22147853
                2023
                2023
                : 77
                : 8-18
                Article
                10.1016/j.matpr.2022.08.450
                5e6e1c05-1aab-4fff-860f-69921f9a268b
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article