56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of the Autophagic Bcl-2/Beclin 1 Interaction

      review-article
      * , , *
      Cells
      MDPI
      autophagy, Bcl-2, Bcl-XL, Mcl-1, Beclin 1, JNK1, DAPK, IP3R, Naf-1, BH3 mimetics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autophagy is an intracellular degradation process responsible for the delivery of cellular material to the lysosomes. One of the key mechanisms for control of autophagy is the modulation of the interaction between the autophagic protein Beclin 1 and the members of the anti-apoptotic Bcl-2 family (e.g., Bcl-2, Bcl-X L and Mcl-1). This binding is regulated by a variety of proteins and compounds that are able to enhance or inhibit the Bcl-2/Beclin 1 interaction in order to repress or activate autophagy, respectively. In this review we will focus on this interaction and discuss its characteristics, relevance and regulation.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia.

          Autophagy is a process by which cytoplasmic organelles can be catabolized either to remove defective structures or as a means of providing macromolecules for energy generation under conditions of nutrient starvation. In this study we demonstrate that mitochondrial autophagy is induced by hypoxia, that this process requires the hypoxia-dependent factor-1-dependent expression of BNIP3 and the constitutive expression of Beclin-1 and Atg5, and that in cells subjected to prolonged hypoxia, mitochondrial autophagy is an adaptive metabolic response which is necessary to prevent increased levels of reactive oxygen species and cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor.

            The biochemical properties of beclin 1 suggest a role in two fundamentally important cell biological pathways: autophagy and apoptosis. We show here that beclin 1-/- mutant mice die early in embryogenesis and beclin 1+/- mutant mice suffer from a high incidence of spontaneous tumors. These tumors continue to express wild-type beclin 1 mRNA and protein, establishing that beclin 1 is a haploinsufficient tumor suppressor gene. Beclin 1-/- embryonic stem cells have a severely altered autophagic response, whereas their apoptotic response to serum withdrawal or UV light is normal. These results demonstrate that beclin 1 is a critical component of mammalian autophagy and establish a role for autophagy in tumor suppression. They both provide a biological explanation for recent evidence implicating beclin 1 in human cancer and suggest that mutations in other genes operating in this pathway may contribute to tumor formation through deregulation of autophagy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondria supply membranes for autophagosome biogenesis during starvation.

              Starvation-induced autophagosomes engulf cytosol and/or organelles and deliver them to lysosomes for degradation, thereby resupplying depleted nutrients. Despite advances in understanding the molecular basis of this process, the membrane origin of autophagosomes remains unclear. Here, we demonstrate that, in starved cells, the outer membrane of mitochondria participates in autophagosome biogenesis. The early autophagosomal marker, Atg5, transiently localizes to punctae on mitochondria, followed by the late autophagosomal marker, LC3. The tail-anchor of an outer mitochondrial membrane protein also labels autophagosomes and is sufficient to deliver another outer mitochondrial membrane protein, Fis1, to autophagosomes. The fluorescent lipid NBD-PS (converted to NBD-phosphotidylethanolamine in mitochondria) transfers from mitochondria to autophagosomes. Photobleaching reveals membranes of mitochondria and autophagosomes are transiently shared. Disruption of mitochondria/ER connections by mitofusin2 depletion dramatically impairs starvation-induced autophagy. Mitochondria thus play a central role in starvation-induced autophagy, contributing membrane to autophagosomes. Copyright (c) 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                06 July 2012
                September 2012
                : 1
                : 3
                : 284-312
                Affiliations
                Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, O/N-1, bus 802, Herestraat 49, Leuven, BE-3000, Belgium; Email: jan.parys@ 123456med.kuleuven.be
                Author notes
                [* ] Authors to whom correspondence should be addressed; Email: jeanpaul.decuypere@ 123456med.kuleuven.be (J.-P.D.); geert.bultynck@ 123456med.kuleuven.be (G.B.); Tel.: +32-16-330-215; Fax: +32-16-330-732.
                Article
                cells-01-00284
                10.3390/cells1030284
                3901098
                24710477
                5e5bc4b4-b5bd-4a68-b88a-7c2ce610e7ea
                © 2012 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 14 May 2012
                : 06 June 2012
                : 15 June 2012
                Categories
                Review

                autophagy,bcl-2,bcl-xl,mcl-1,beclin 1,jnk1,dapk,ip3r,naf-1,bh3 mimetics
                autophagy, bcl-2, bcl-xl, mcl-1, beclin 1, jnk1, dapk, ip3r, naf-1, bh3 mimetics

                Comments

                Comment on this article