59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histone modification has been implicated in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localization of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on acetylation at lysine 9 (H3K9ac), lysine 18 (H3K18ac), and lysine 23 (H3K23ac); tri-methylation at lysine 4 (H3K4me3) and lysine 27 (H3K27me3); and phosphorylation at serine 10 (H3S10phos). As a result, we found that there was a significant fluctuation in the modifications; in spermatogonia, the stainings for H3K9ac, H3K18ac, and H3K23ac were strong while that for H3K4me3 was weak. In spermatocytes, the stainings for H3K9ac, H3K18ac, H3K23ac, and H3K4me3 were reduced in the preleptotene to pachytene stage, but in diplotene stage the stainings for H3K18ac, H3K23ac, and H3K4me3 seemed to become intense again. The staining for H3K27me3 was nearly constant throughout these stages. In the ensuing spermiogenesis, a dramatic acetylation and methylation of histone H3 was found in the early elongated spermatids and then almost all signals disappeared in the late elongated spermatids, in parallel with the replacement from histones to protamines. In addition, we confirmed that the staining of histone H3S10phos was exclusively associated with mitotic and meiotic cell division. Based upon the above results, we indicated that the modification pattern of histone H3 is subject to dynamic change and specific to a certain stage of germ cell differentiation during mouse spermatogenesis.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors.

          Cellular differentiation entails loss of pluripotency and gain of lineage- and cell-type-specific characteristics. Using a murine system that progresses from stem cells to lineage-committed progenitors to terminally differentiated neurons, we analyzed DNA methylation and Polycomb-mediated histone H3 methylation (H3K27me3). We show that several hundred promoters, including pluripotency and germline-specific genes, become DNA methylated in lineage-committed progenitor cells, suggesting that DNA methylation may already repress pluripotency in progenitor cells. Conversely, we detect loss and acquisition of H3K27me3 at additional targets in both progenitor and terminal states. Surprisingly, many neuron-specific genes that become activated upon terminal differentiation are Polycomb targets only in progenitor cells. Moreover, promoters marked by H3K27me3 in stem cells frequently become DNA methylated during differentiation, suggesting context-dependent crosstalk between Polycomb and DNA methylation. These data suggest a model how de novo DNA methylation and dynamic switches in Polycomb targets restrict pluripotency and define the developmental potential of progenitor cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histone acetylation and an epigenetic code.

            B. Turner (2000)
            The enzyme-catalyzed acetylation of the N-terminal tail domains of core histones provides a rich potential source of epigenetic information. This may be used both to mediate transient changes in transcription, through modification of promoter-proximal nucleosomes, and for the longer-term maintenance and modulation of patterns of gene expression. The latter may be achieved by setting specific patterns of histone acetylation, perhaps involving acetylation of particular lysine residues, across relatively large chromatin domains. The histone acetylating and deacetylating enzymes (HATs and HDACs, respectively) can be targeted to specific regions of the genome and show varying degrees of substrate specificity, properties that are consistent with a role in maintaining a dynamic, acetylation-based epigenetic code. The code may be read (ie. exert a functional effect) either through non-histone proteins that bind in an acetylation-dependent manner, or through direct effects on chromatin structure. Recent evidence raises the interesting possibility that an acetylation-based code may operate through both mitosis and meiosis, providing a possible mechanism for germ-line transmission of epigenetic changes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pluripotency of spermatogonial stem cells from adult mouse testis.

              Embryonic germ cells as well as germline stem cells from neonatal mouse testis are pluripotent and have differentiation potential similar to embryonic stem cells, suggesting that the germline lineage may retain the ability to generate pluripotent cells. However, until now there has been no evidence for the pluripotency and plasticity of adult spermatogonial stem cells (SSCs), which are responsible for maintaining spermatogenesis throughout life in the male. Here we show the isolation of SSCs from adult mouse testis using genetic selection, with a success rate of 27%. These isolated SSCs respond to culture conditions and acquire embryonic stem cell properties. We name these cells multipotent adult germline stem cells (maGSCs). They are able to spontaneously differentiate into derivatives of the three embryonic germ layers in vitro and generate teratomas in immunodeficient mice. When injected into an early blastocyst, SSCs contribute to the development of various organs and show germline transmission. Thus, the capacity to form multipotent cells persists in adult mouse testis. Establishment of human maGSCs from testicular biopsies may allow individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells. Furthermore, these cells may provide new opportunities to study genetic diseases in various cell lineages.
                Bookmark

                Author and article information

                Journal
                Acta Histochem Cytochem
                AHC
                Acta Histochemica et Cytochemica
                Japan Society of Histochemistry and Cytochemistry (Tokyo, Japan )
                0044-5991
                1347-5800
                27 August 2011
                20 July 2011
                : 44
                : 4
                : 183-190
                Affiliations
                [1 ]Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
                [2 ]Department of Prosthodontics, College of Stomatology, Jiamusi University, Jiamusi, China
                [3 ]Department of General Surgery, First Affiliated Hospital, Medical College of Jiamusi University, Jiamusi, China
                Author notes
                Correspondence to: Takehiko Koji, Ph.D., Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1–12–4 Sakamoto, Nagasaki 852–8523, Japan. E-mail: tkoji@ 123456nagasaki-u.ac.jp
                Article
                AHC11027
                10.1267/ahc.11027
                3168764
                21927517
                5e31249e-f443-4166-9737-cb38497e7168
                © 2011 The Japan Society of Histochemistry and Cytochemistry

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 June 2011
                : 29 June 2011
                Categories
                Regular Article

                Clinical chemistry
                immunohistochemistry,epigenetics,spermatogenesis,histone h3 modification,mouse
                Clinical chemistry
                immunohistochemistry, epigenetics, spermatogenesis, histone h3 modification, mouse

                Comments

                Comment on this article