23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      3D printed biaxial stretcher compatible with live fluorescence microscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mechanical characterization and tensile testing of biological samples is important when determining the material properties of a tissue; however, performing tensile testing and tissue stretching while monitoring cellular changes via fluorescence microscopy is often challenging. Additionally, commercially available cell/tissue stretchers are often expensive, hard to customize, and limited in their fluorescence imaging compatibility. We have developed a 3D printed Open source Biaxial Stretcher (OBS) to be a low-cost stage top mountable biaxial stretching system for use with live cell fluorescence microscopy in both upright and inverted microscope configurations. Our OBS takes advantage of readily available open source desktop 3D printer hardware and software to deliver a fully motorized high precision (10 ± 0.5 μm movement accuracy) low cost biaxial stretching device capable of 4.5 cm of XY travel with a touch screen control panel, and an integrated heated platform with sample bath to maintain cell and tissue viability. Further, we designed a series of tissue mounts and clamps to accommodate varying samples from synthetic materials to biological tissue. By creating a low-profile design, we can directly mount the stretcher onto a microscope stage, and through coordinated biaxial stretching we maintain a constant field of view facilitating real-time sample tracking and time-lapse fluorescence imaging.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular mechanotransduction: putting all the pieces together again.

          Analysis of cellular mechanotransduction, the mechanism by which cells convert mechanical signals into biochemical responses, has focused on identification of critical mechanosensitive molecules and cellular components. Stretch-activated ion channels, caveolae, integrins, cadherins, growth factor receptors, myosin motors, cytoskeletal filaments, nuclei, extracellular matrix, and numerous other structures and signaling molecules have all been shown to contribute to the mechanotransduction response. However, little is known about how these different molecules function within the structural context of living cells, tissues, and organs to produce the orchestrated cellular behaviors required for mechanosensation, embryogenesis, and physiological control. Recent work from a wide range of fields reveals that organ, tissue, and cell anatomy are as important for mechanotransduction as individual mechanosensitive proteins and that our bodies use structural hierarchies (systems within systems) composed of interconnected networks that span from the macroscale to the nanoscale in order to focus stresses on specific mechanotransducer molecules. The presence of isometric tension (prestress) at all levels of these multiscale networks ensures that various molecular scale mechanochemical transduction mechanisms proceed simultaneously and produce a concerted response. Future research in this area will therefore require analysis, understanding, and modeling of tensionally integrated (tensegrity) systems of mechanochemical control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantifying forces in cell biology

            Physical forces influence the growth and development of all organisms. In the second Review in the Series on Mechanobiology, Trepat and co-authors describe techniques to measure forces generated by cells, and discuss their use and limitations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanobiology of cardiomyocyte development.

              Cardiac cells are under constant, self-generated mechanical stress which can affect the differentiation of stem cells into cardiac myocytes, the development of differentiated cells and the maturation of cells in neonatal mammals. In this article, the effects of direct stretch, electrically induced beating and substrate elasticity on the behavior and development of cardiomyocytes are reviewed, with particular emphasis on the effects of substrate stiffness on cardiomyocyte maturation. In order to relate these observations to in vivo mechanical conditions, we isolated the left ventricle of Black Swiss mice from embryonic day 13.5 through post-natal day 14 and measured the elastic modulus of the epicardium using atomic force microscope indentation. We found that the elastic modulus of the epicardium significantly changes at birth, from an embryonic value of 12+/-4kPa to a neonatal value of 39+/-7kPa. This change is in the range shown to significantly affect the development of neonatal cardiomyocytes. Copyright 2009 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                101710262
                46771
                HardwareX
                HardwareX
                HardwareX
                2468-0672
                3 April 2020
                April 2020
                5 February 2020
                27 January 2022
                : 7
                : e00095
                Affiliations
                [a ]Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
                [b ]Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
                [c ]Department of Medicine, Renal-Electrolyte Division, and Cell Biology, University of Pittsburgh, Pittsburgh, PA United States
                Author notes
                [1]

                Denotes equal contributions.

                [* ]Corresponding author. feinberg@ 123456andrew.cmu.edu (A.W. Feinberg).
                Article
                NIHMS1581526
                10.1016/j.ohx.2020.e00095
                8794355
                35097243
                5e2273b1-cdb4-41b9-8d2e-79aa65bda9e6

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                cell stretcher,fluorescence imaging,mechanobiology,tensile testing,tissue mechanics,biaxial strain

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content300

                Cited by12

                Most referenced authors66