7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phenotypic Traits Estimation and Preliminary Yield Assessment in Different Phenophases of Wheat Breeding Experiment Based on UAV Multispectral Images

      , , , , , , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The utility of unmanned aerial vehicles (UAV) imagery in retrieving phenotypic data to support plant breeding research has been a topic of increasing interest in recent years. The advantages of image-based phenotyping are related to the high spatial and temporal resolution of the retrieved data and the non-destructive and rapid method of data acquisition. This study trains parametric and nonparametric regression models to retrieve leaf area index (LAI), fraction of absorbed photosynthetically active radiation (fAPAR), fractional vegetation cover (fCover), leaf chlorophyll content (LCC), canopy chlorophyll content (CCC), and grain yield (GY) of winter durum wheat breeding experiment from four-bands UAV images. A ground dataset, collected during two field campaigns and complemented with data from a previous study, is used for model development. The dataset is split at random into two parts, one for training and one for testing the models. The tested parametric models use the vegetation index formula and parametric functions. The tested nonparametric models are partial least square regression (PLSR), random forest regression (RFR), support vector regression (SVR), kernel ridge regression (KRR), and Gaussian processes regression (GPR). The retrieved biophysical variables along with traditional phenotypic traits (plant height, yield, and tillering) are analysed for detection of genetic diversity, proximity, and similarity in the studied genotypes. Analysis of variance (ANOVA), Duncan’s multiple range test, correlation analysis, and principal component analysis (PCA) are performed with the phenotypic traits. The parametric and nonparametric models show close results for GY retrieval, with parametric models indicating slightly higher accuracy (R2 = 0.49; RMSE = 0.58 kg/plot; rRMSE = 6.1%). However, the nonparametric model, GPR, computes per pixel uncertainty estimation, making it more appealing for operational use. Furthermore, our results demonstrate that grain filling was better than flowering phenological stage to predict GY. The nonparametric models show better results for biophysical variables retrieval, with GPR presenting the highest prediction performance. Nonetheless, robust models are found only for LAI (R2 = 0.48; RMSE = 0.64; rRMSE = 13.5%) and LCC (R2 = 0.49; RMSE = 31.57 mg m−2; rRMSE = 6.4%) and therefore these are the only remotely sensed phenotypic traits included in the statistical analysis for preliminary assessment of wheat productivity. The results from ANOVA and PCA illustrate that the retrieved remotely sensed phenotypic traits are a valuable addition to the traditional phenotypic traits for plant breeding studies. We believe that these preliminary results could speed up crop improvement programs; however, stronger interdisciplinary research is still needed, as well as uncertainty estimation of the remotely sensed phenotypic traits.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: not found
          • Article: not found

          Partial least-squares regression: a tutorial

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Field high-throughput phenotyping: the new crop breeding frontier.

            Constraints in field phenotyping capability limit our ability to dissect the genetics of quantitative traits, particularly those related to yield and stress tolerance (e.g., yield potential as well as increased drought, heat tolerance, and nutrient efficiency, etc.). The development of effective field-based high-throughput phenotyping platforms (HTPPs) remains a bottleneck for future breeding advances. However, progress in sensors, aeronautics, and high-performance computing are paving the way. Here, we review recent advances in field HTPPs, which should combine at an affordable cost, high capacity for data recording, scoring and processing, and non-invasive remote sensing methods, together with automated environmental data collection. Laboratory analyses of key plant parts may complement direct phenotyping under field conditions. Improvements in user-friendly data management together with a more powerful interpretation of results should increase the use of field HTPPs, therefore increasing the efficiency of crop genetic improvement to meet the needs of future generations. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                February 2022
                February 20 2022
                : 14
                : 4
                : 1019
                Article
                10.3390/rs14041019
                5e1df6fb-a8c7-4b23-9aaf-d366b9e3fc57
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article