8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of monomeric amyloid-β in cognitive performance in Alzheimer's disease: Insights from clinical trials with secretase inhibitors and monoclonal antibodies

      , , ,
      Pharmacological Research
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          According to the β-amyloid (Aβ) hypothesis of Alzheimer's disease (AD), brain Aβ accumulation is the primary cascade event leading to cognitive deficit and dementia. Numerous anti-Aβ drugs either inhibiting production or aggregation of Aβ or stimulating its clearance have failed to show clinical benefit in large scale AD trials, with β- and γ-secretase inhibitors consistently worsening cognitive and clinical decline. In June 2021, the FDA approved aducanumab, an anti-Aβ monoclonal antibody for early AD based on its ability to reduce brain amyloid plaques, while two other amyloid-clearing antibodies (lecanemab and donanemab) have recently produced encouraging cognitive and clinical results. We reviewed AD trials using PubMed, meeting abstracts and ClinicalTrials.gov and evaluated the effects of such drugs on cerebrospinal fluid (CSF) Aβ levels, correlating them with cognitive effects. We found that β-secretase and γ-secretase inhibitors produce detrimental cognitive effects by significantly reducing CSF Aβ levels. We speculate that monoclonal antibodies targeting Aβ protofibrils, fibrils or plaques may improve cognitive performance in early AD by increasing soluble Aβ levels through Aβ aggregate disassembly and/or stabilization of existing Aβ monomers.These findings suggest that the real culprit in AD may be decreased levels of soluble monomeric Aβ due to sequestration into brain Aβ aggregates and plaques.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Alzheimer's disease

          In this Seminar, we highlight the main developments in the field of Alzheimer's disease. The most recent data indicate that, by 2050, the prevalence of dementia will double in Europe and triple worldwide, and that estimate is 3 times higher when based on a biological (rather than clinical) definition of Alzheimer's disease. The earliest phase of Alzheimer's disease (cellular phase) happens in parallel with accumulating amyloid β, inducing the spread of tau pathology. The risk of Alzheimer's disease is 60-80% dependent on heritable factors, with more than 40 Alzheimer's disease-associated genetic risk loci already identified, of which the APOE alleles have the strongest association with the disease. Novel biomarkers include PET scans and plasma assays for amyloid β and phosphorylated tau, which show great promise for clinical and research use. Multidomain lifestyle-based prevention trials suggest cognitive benefits in participants with increased risk of dementia. Lifestyle factors do not directly affect Alzheimer's disease pathology, but can still contribute to a positive outcome in individuals with Alzheimer's disease. Promising pharmacological treatments are poised at advanced stages of clinical trials and include anti-amyloid β, anti-tau, and anti-inflammatory strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lecanemab in Early Alzheimer’s Disease

            The accumulation of soluble and insoluble aggregated amyloid-beta (Aβ) may initiate or potentiate pathologic processes in Alzheimer's disease. Lecanemab, a humanized IgG1 monoclonal antibody that binds with high affinity to Aβ soluble protofibrils, is being tested in persons with early Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease.

              We studied the accumulation of neurofibrillary tangles (NFTs) and senile plaques (SPs) in 10 Alzheimer's disease patients who had been examined during life. We counted NFTs and SPs in 13 cytoarchitectural regions representing limbic, primary sensory, and association cortices, and in subcortical neurotransmitter-specific areas. The degree of neuropathologic change was compared with the severity of dementia, as assessed by the Blessed Dementia Scale and duration of illness. We found that (1) the severity of dementia was positively related to the number of NFTs in neocortex, but not to the degree of SP deposition; (2) NFTs accumulate in a consistent pattern reflecting hierarchic vulnerability of individual cytoarchitectural fields; (3) NFTs appeared in the entorhinal cortex, CA1/subiculum field of the hippocampal formation, and the amygdala early in the disease process; and (4) the degree of SP deposition was also related to a hierarchic vulnerability of certain brain areas to accumulate SPs, but the pattern of SP distribution was different from that of NFT.
                Bookmark

                Author and article information

                Journal
                Pharmacological Research
                Pharmacological Research
                Elsevier BV
                10436618
                January 2023
                January 2023
                : 187
                : 106631
                Article
                10.1016/j.phrs.2022.106631
                36586644
                5e03e87f-62f2-402e-9b57-8f4651d63770
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article