7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene-encoding DNA origami for mammalian cell expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA origami may enable more versatile gene delivery applications through its ability to create custom nanoscale objects with specific targeting, cell-invading, and intracellular effector functionalities. Toward this goal here we describe the expression of genes folded in DNA origami objects delivered to mammalian cells. Genes readily express from custom-sequence single-strand scaffolds folded within DNA origami objects, provided that the objects can denature in the cell. We demonstrate enhanced gene expression efficiency by including and tuning multiple functional sequences and structures, including virus-inspired inverted-terminal repeat-like (ITR) hairpin motifs upstream or flanking the expression cassette. We describe gene-encoding DNA origami bricks that assemble into multimeric objects to enable stoichiometrically controlled co-delivery and expression of multiple genes in the same cells. Our work provides a framework for exploiting DNA origami for gene delivery applications.

          Abstract

          DNA origami may enable more versatile gene delivery applications through its ability to create custom nanoscale objects. Here the authors show that genes folded in DNA origami with custom scaffolds express efficiently when delivered to mammalian cells and can be assembled into multimeric arrays to deliver and express defined ratios of multiple genes simultaneously.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Fiji: an open-source platform for biological-image analysis.

          Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Computer visualization of three-dimensional image data using IMOD.

            We have developed a computer software package, IMOD, as a tool for analyzing and viewing three-dimensional biological image data. IMOD is useful for studying and modeling data from tomographic, serial section, and optical section reconstructions. The software allows image data to be visualized by several different methods. Models of the image data can be visualized by volume or contour surface rendering and can yield quantitative information.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Folding DNA to create nanoscale shapes and patterns.

              'Bottom-up fabrication', which exploits the intrinsic properties of atoms and molecules to direct their self-organization, is widely used to make relatively simple nanostructures. A key goal for this approach is to create nanostructures of high complexity, matching that routinely achieved by 'top-down' methods. The self-assembly of DNA molecules provides an attractive route towards this goal. Here I describe a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes. The design for a desired shape is made by raster-filling the shape with a 7-kilobase single-stranded scaffold and by choosing over 200 short oligonucleotide 'staple strands' to hold the scaffold in place. Once synthesized and mixed, the staple and scaffold strands self-assemble in a single step. The resulting DNA structures are roughly 100 nm in diameter and approximate desired shapes such as squares, disks and five-pointed stars with a spatial resolution of 6 nm. Because each oligonucleotide can serve as a 6-nm pixel, the structures can be programmed to bear complex patterns such as words and images on their surfaces. Finally, individual DNA structures can be programmed to form larger assemblies, including extended periodic lattices and a hexamer of triangles (which constitutes a 30-megadalton molecular complex).
                Bookmark

                Author and article information

                Contributors
                dietz@tum.de
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                23 February 2023
                23 February 2023
                2023
                : 14
                : 1017
                Affiliations
                [1 ]GRID grid.6936.a, ISNI 0000000123222966, Department of Biosciences, School of Natural Sciences, , Technical University of Munich, ; Am Coulombwall 4a, 85748 Garching, Germany
                [2 ]GRID grid.6936.a, ISNI 0000000123222966, Munich Institute of Biomedical Engineering, , Technical University of Munich, ; Boltzmannstraße 11, 85748 Garching, Germany
                Author information
                http://orcid.org/0000-0002-8680-7766
                http://orcid.org/0000-0001-9928-3845
                http://orcid.org/0000-0003-1270-3662
                Article
                36601
                10.1038/s41467-023-36601-1
                9950468
                36823187
                5ddf1b3e-960e-4940-a756-463e2973953f
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 October 2022
                : 9 February 2023
                Funding
                Funded by: FundRef https://doi.org/10.13039/100010661, EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020);
                Award ID: 899619
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2023

                Uncategorized
                biotechnology,dna nanotechnology
                Uncategorized
                biotechnology, dna nanotechnology

                Comments

                Comment on this article