4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Protein attachment to nanoporous anodic alumina for biotechnological applications: influence of pore size, protein size and functionalization path.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanoporous anodic alumina (NAA) is a material with great interest in nanotechnology and with promising applications to biotechnology. Obtaining specific and regularly functionalized NAA surfaces is essential to obtain meaningful results and applications. Silane-PEG-NHS (triethoxysilane-polyethylene-glycol-N-hydroxysuccinimide) is a covalent linker commonly used for single-molecule studies. We investigate the functionalization of NAA with silane-PEG-NHS and compared with two common, but not single-molecule, grafting agents, APTMS (3-aminopropylotrimethoxysilane) as an electrostatic linker, and APTMS-GTA (3-aminopropylotrimethoxysilane-glutaraldehyde) as covalent. Another outcome of this study is to show how two proteins (collagen and bovine serum albumin, BSA) with different properties differentially arrange for different functionalizations and NAA pore sizes. FTIR is used to demonstrate the surface modification steps and fluorescence confocal microscopy reveals that silane-PEG-NHS results in a more homogeneous protein distribution in comparison to the other linkers. Reflection interference Fourier transform spectroscopy confirms the confocal fluorescence microscopy results and permits to estimate the amounts of linker and linked proteins within the pores. These results permit to obtain uniformly chemical modified NAA supports with a great value in biosensing, drug delivery and cell biology.

          Related collections

          Author and article information

          Journal
          Colloids Surf B Biointerfaces
          Colloids and surfaces. B, Biointerfaces
          Elsevier BV
          1873-4367
          0927-7765
          Oct 01 2014
          : 122
          Affiliations
          [1 ] Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat, Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007, Spain.
          [2 ] Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat, Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007, Spain. Electronic address: lluis.marsal@urv.cat.
          Article
          S0927-7765(14)00389-0
          10.1016/j.colsurfb.2014.07.027
          25086305
          5dc35a8f-c75c-482b-85e5-c60734a4f2ed
          History

          Silane-PEG-NHS,GTA,Nanoporous anodic alumina,Reflection interference Fourier transform spectroscopy (RIFTS),BSA,Collagen

          Comments

          Comment on this article