6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gapless edge states localized to odd/even layers of AA′-stacked honeycomb multilayers with staggered AB-sublattice potentials

      research-article
      ,
      Scientific Reports
      Nature Publishing Group UK
      Materials science, Physics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In honeycomb multilayers with staggered AB-sublattice potentials, we predict gapless edge states localized to either of the odd and the even layers for the AA \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\prime }$$\end{document} stacking order in which the sublattice-pseudospin polarizations of adjacent layers are antiparallel. Gaps in the projected layer-pseudospin spectrum suppress interlayer hopping between odd and even layers. The layer-valley Chern number corresponding to the edge states was obtained by decomposing the occupied state into two layer-pseudospin sectors by using a projected layer-pseudospin operator. For the AB \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\prime }$$\end{document} stacking, the sublattice-pseudospin polarizations of adjacent layers are antiparallel, but the layer-pseudospin spectrum gap closes at the interface of the topologically different states, leading to gapped edge states. For the AA and AB stackings where the sublattice-pseudospin polarizations of the adjacent layers are parallel, the gapless edge states corresponding to quantum valley Hall states are evenly distributed across the layers.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          The electronic properties of graphene

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two-dimensional gas of massless Dirac fermions in graphene.

            Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrödinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Valley-contrasting physics in graphene: magnetic moment and topological transport.

              We investigate physical properties that can be used to distinguish the valley degree of freedom in systems where inversion symmetry is broken, using graphene systems as examples. We show that the pseudospin associated with the valley index of carriers has an intrinsic magnetic moment, in close analogy with the Bohr magneton for the electron spin. There is also a valley dependent Berry phase effect that can result in a valley contrasting Hall transport, with carriers in different valleys turning into opposite directions transverse to an in-plane electric field. These effects can be used to generate and detect valley polarization by magnetic and electric means, forming the basis for the valley-based electronics applications.
                Bookmark

                Author and article information

                Contributors
                rscel@korea.ac.kr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 October 2023
                7 October 2023
                2023
                : 13
                : 16915
                Affiliations
                Department of Physics, Korea University, ( https://ror.org/047dqcg40) Seoul, 02841 Republic of Korea
                Article
                44084
                10.1038/s41598-023-44084-9
                10560242
                37805558
                5dbc9c23-7b24-4f82-b3ae-d8195b55de9a
                © Springer Nature Limited 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 March 2023
                : 3 October 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003725, National Research Foundation of Korea;
                Award ID: 2021R1I1A1A01040302
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2023

                Uncategorized
                materials science,physics
                Uncategorized
                materials science, physics

                Comments

                Comment on this article