14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Preterm birth (PTB) complicates 5–18% of pregnancies globally and is a leading cause of maternal and fetal morbidity and mortality. Most PTB is spontaneous and idiopathic, with largely undefined causes. To increase understanding of PTB, much research in recent years has focused on using animal models to recapitulate the pathophysiology of PTB. Dysfunctions of maternal immune adaptations have been implicated in a range of pregnancy pathologies, including PTB. A wealth of evidence arising from mouse models as well as human studies is now available to support that PTB results from a breakdown in fetal-maternal tolerance, along with excessive, premature inflammation. In this review, we examine the current knowledge of the bidirectional communication between fetal and maternal systems and its role in the immunopathogenesis of PTB. These recent insights significantly advance our understanding of the pathogenesis of PTB, which is essential to ultimately designing more effective strategies for early prediction and subsequent prevention of PTB.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero.

          As the immune system develops, T cells are selected or regulated to become tolerant of self antigens and reactive against foreign antigens. In mice, the induction of such tolerance is thought to be attributable to the deletion of self-reactive cells. Here, we show that the human fetal immune system takes advantage of an additional mechanism: the generation of regulatory T cells (Tregs) that suppress fetal immune responses. We find that substantial numbers of maternal cells cross the placenta to reside in fetal lymph nodes, inducing the development of CD4+CD25highFoxP3+ Tregs that suppress fetal antimaternal immunity and persist at least until early adulthood. These findings reveal a form of antigen-specific tolerance in humans, induced in utero and probably active in regulating immune responses after birth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo.

            Intracellular pathogens and the molecules they express have limited contact with the immune system. Here, we show that macrophages infected with intracellular pathogens Mycobacterium tuberculosis, M bovis BCG, Salmonella typhimurium, or Toxoplasma gondii release from cells small vesicles known as exosomes which contain pathogen-associated molecular patterns (PAMPs). These exosomes, when exposed to uninfected macrophages, stimulate a proinflammatory response in a Toll-like receptor- and myeloid differentiation factor 88-dependent manner. Further, exosomes isolated from the bronchoalveolar lavage fluid (BALF) of M bovis BCG-infected mice contain the mycobacteria components lipoarabinomannan and the 19-kDa lipoprotein and can stimulate TNF-alpha production in naive macrophages. Moreover, exosomes isolated from M bovis BCG- and M tuberculosis-infected macrophages, when injected intranasally into mice, stimulate TNF-alpha and IL-12 production as well as neutrophil and macrophage recruitment in the lung. These studies identify a previously unknown function for exosomes in promoting intercellular communication during an immune response to intracellular pathogens, and we hypothesize that extracellular release of exosomes containing PAMPs is an important mechanism of immune surveillance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence that the endometrial microbiota has an effect on implantation success or failure.

              Bacterial cells in the human body account for 1-3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function.
                Bookmark

                Author and article information

                Contributors
                p.arck@uke.de
                Journal
                Semin Immunopathol
                Semin Immunopathol
                Seminars in Immunopathology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1863-2297
                1863-2300
                7 September 2020
                7 September 2020
                2020
                : 42
                : 4
                : 413-429
                Affiliations
                GRID grid.13648.38, ISNI 0000 0001 2180 3484, Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal Medicine, , University Medical Center Hamburg-Eppendorf, ; Martinistraße 52, 20251 Hamburg, Germany
                Author notes

                This article is a contribution to the special issue on Preterm birth: Pathogenesis and clinical consequences revisited – Guest Editors: Anke Diemert and Petra Arck

                Author information
                http://orcid.org/0000-0002-2932-926X
                Article
                807
                10.1007/s00281-020-00807-y
                7508962
                32894326
                5db7ce09-1d48-49ee-a81c-4a4403725873
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 March 2020
                : 14 July 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: KFO296, AR232/25-2
                Award Recipient :
                Funded by: Authority for Science, Research and Equality, Hanseatic City of Hamburg
                Award ID: LFF-FV73
                Award Recipient :
                Categories
                Review
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2020

                Pathology
                preterm birth,labor,mouse models,regulatory t cells,inflammatory signaling pathways,microbiome,fetal signals

                Comments

                Comment on this article