1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of bacterial communities in sponges and coral inhabiting Red Sea, using barcoded 454 pyrosequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microbial communities are linked with marine sponge are diverse in their structure and function. Our understanding of the sponge-associated microbial diversity is limited especially from Red Sea in Saudi Arabia where few species of sponges have been studied. Here we used pyrosequencing to study two marine sponges and coral species sampled from Obhur region from Red sea in Jeddah. A total of 168 operational taxonomic units (OTUs) were identified from Haliclona caerulea, Stylissa carteri and Rhytisma fulvum. Taxonomic identification of tag sequences of 16S ribosomal RNA revealed 6 different bacterial phyla and 9 different classes. A proportion of unclassified reads were was also observed in sponges and coral sample. We found diverse bacterial communities associated with two sponges and a coral sample. Diversity and richness estimates based on OUTs revealed that sponge H. caerulea had significantly high bacterial diversity. The identified OTUs showed unique clustering in three sponge samples as revealed by Principal coordinate analysis (PCoA). Proteobacteria (88–95%) was dominant phyla alonwith Bacteroidetes, Planctomycetes, Cyanobacteria, Firmicutes and Nitrospirae. Seventeen different genera were identified where genus Pseudoalteromonas was dominant in all three samples. This is first study to assess bacterial communities of sponge and coral sample that have never been studied before to unravel their microbial communities using 454-pyrosequencing method.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          QIIME allows analysis of high-throughput community sequencing data.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic insights into the marine sponge microbiome.

            Marine sponges (phylum Porifera) often contain dense and diverse microbial communities, which can constitute up to 35% of the sponge biomass. The genome of one sponge, Amphimedon queenslandica, was recently sequenced, and this has provided new insights into the origins of animal evolution. Complementary efforts to sequence the genomes of uncultivated sponge symbionts have yielded the first glimpse of how these intimate partnerships are formed. The remarkable microbial and chemical diversity of the sponge-microorganism association, coupled with its postulated antiquity, makes sponges important model systems for the study of metazoan host-microorganism interactions, and their evolution, as well as for enabling access to biotechnologically important symbiont-derived natural products. In this Review, we discuss our current understanding of the interactions between marine sponges and their microbial symbiotic consortia, and highlight recent insights into these relationships from genomic studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular evidence for a uniform microbial community in sponges from different oceans.

              Sponges (class Porifera) are evolutionarily ancient metazoans that populate the tropical oceans in great abundances but also occur in temperate regions and even in freshwater. Sponges contain large numbers of bacteria that are embedded within the animal matrix. The phylogeny of these bacteria and the evolutionary age of the interaction are virtually unknown. In order to provide insights into the species richness of the microbial community of sponges, we performed a comprehensive diversity survey based on 190 sponge-derived 16S ribosomal DNA (rDNA) sequences. The sponges Aplysina aerophoba and Theonella swinhoei were chosen for construction of the bacterial 16S rDNA library because they are taxonomically distantly related and they populate nonoverlapping geographic regions. In both sponges, a uniform microbial community was discovered whose phylogenetic signature is distinctly different from that of marine plankton or marine sediments. Altogether 14 monophyletic, sponge-specific sequence clusters were identified that belong to at least seven different bacterial divisions. By definition, the sequences of each cluster are more closely related to each other than to a sequence from nonsponge sources. These monophyletic clusters comprise 70% of all publicly available sponge-derived 16S rDNA sequences, reflecting the generality of the observed phenomenon. This shared microbial fraction represents the smallest common denominator of the sponges investigated in this study. Bacteria that are exclusively found in certain host species or that occur only transiently would have been missed. A picture emerges where sponges can be viewed as highly concentrated reservoirs of so far uncultured and elusive marine microorganisms.
                Bookmark

                Author and article information

                Contributors
                Journal
                Saudi J Biol Sci
                Saudi J Biol Sci
                Saudi Journal of Biological Sciences
                Elsevier
                1319-562X
                2213-7106
                11 November 2020
                January 2021
                11 November 2020
                : 28
                : 1
                : 847-854
                Affiliations
                [a ]Special Infectious Agents Unit, King Fahd Medical Research Center
                [b ]Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
                Author notes
                [* ]Corresponding author at: Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia. fnaseer@ 123456kau.edu.sa
                Article
                S1319-562X(20)30583-0
                10.1016/j.sjbs.2020.11.021
                7783839
                5db6363e-7b20-481f-aecb-901f32c6c2ae
                © 2020 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 24 July 2020
                : 29 October 2020
                : 1 November 2020
                Categories
                Original Article

                marine sponges,454 pyrosequencing,proteobacteria,bacterial diversity,red sea

                Comments

                Comment on this article