12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Entanglement verification of noisy N00N states

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Entangled quantum states, such as N00N state, are of major importance for quantum technologies due to their quantum enhanced performance. At the same time, their quantum correlations are relatively vulnerable when they are subjected to imperfections. Therefore, it is crucial to determine under which circumstances their distinct quantum features can be exploited. In this paper, we study the entanglement property of noisy N00N states. This class of states is a generalization of N00N states including various attenuation effects, such as mixing, constant or fluctuating losses, and dephasing. To verify their entanglement, we pursue two strategies: detection-based entanglement witnesses and entanglement quasiprobabilities. Both methods result from our solution of so-called separability eigenvalue equations. In particular, the entanglement quasiprobabilities allow for a full entanglement characterization. As examples of our general treatment, the cases of N00N states subjected to Gaussian dephasing and fluctuating atmospheric losses are explicitly studied. In any correlated fluctuating loss channel, entanglement is found to survive for non-zero transmissivity.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantum entanglement

          All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations. They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon. A basic role of entanglement witnesses in detection of entanglement is emphasized.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-NOON states by mixing quantum and classical light.

            Precision measurements can be brought to their ultimate limit by harnessing the principles of quantum mechanics. In optics, multiphoton entangled states, known as NOON states, can be used to obtain high-precision phase measurements, becoming more and more advantageous as the number of photons grows. We generated "high-NOON" states (N = 5) by multiphoton interference of quantum down-converted light with a classical coherent state in an approach that is inherently scalable. Super-resolving phase measurements with up to five entangled photons were produced with a visibility higher than that obtainable using classical light only.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Super-resolving phase measurements with a multi-photon entangled state

              Using a linear optical elements and post-selection, we construct an entangled polarization state of three photons in the same spatial mode. This state is analogous to a ``photon-number path entangled state'' and can be used for super-resolving interferometry. Measuring a birefringent phase shift, we demonstrate two- and three-fold improvements in phase resolution.
                Bookmark

                Author and article information

                Journal
                2017-04-19
                Article
                1704.05637
                5da4fdd7-6af0-4acd-8869-056c585d281e

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                quant-ph

                Quantum physics & Field theory
                Quantum physics & Field theory

                Comments

                Comment on this article