6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome analysis of “ Candidatus Aschnera chinzeii,” the bacterial endosymbiont of the blood-sucking bat fly Penicillidia jenynsii (Insecta: Diptera: Nycteribiidae)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insect–microbe endosymbiotic associations are omnipresent in nature, wherein the symbiotic microbes often play pivotal biological roles for their host insects. In particular, insects utilizing nutritionally imbalanced food sources are dependent on specific microbial symbionts to compensate for the nutritional deficiency via provisioning of B vitamins in blood-feeding insects, such as tsetse flies, lice, and bedbugs. Bat flies of the family Nycteribiidae (Diptera) are blood-sucking ectoparasites of bats and shown to be associated with co-speciating bacterial endosymbiont “ Candidatus Aschnera chinzeii,” although functional aspects of the microbial symbiosis have been totally unknown. In this study, we report the first complete genome sequence of Aschnera from the bristled bat fly Penicillidia jenynsii. The Aschnera genome consisted of a 748,020 bp circular chromosome and a 18,747 bp circular plasmid. The chromosome encoded 603 protein coding genes (including 3 pseudogenes), 33 transfer RNAs, and 1 copy of 16S/23S/5S ribosomal RNA operon. The plasmid contained 10 protein coding genes, whose biological function was elusive. The genome size, 0.77 Mbp, was drastically reduced in comparison with 4–6 Mbp genomes of free-living γ-proteobacteria. Accordingly, the Aschnera genome was devoid of many important functional genes, such as synthetic pathway genes for purines, pyrimidines, and essential amino acids. On the other hand, the Aschnera genome retained complete or near-complete synthetic pathway genes for biotin (vitamin B7), tetrahydrofolate (vitamin B9), riboflavin (vitamin B2), and pyridoxal 5'-phosphate (vitamin B6), suggesting that Aschnera provides these vitamins and cofactors that are deficient in the blood meal of the host bat fly. Similar retention patterns of the synthetic pathway genes for vitamins and cofactors were also observed in the endosymbiont genomes of other blood-sucking insects, such as Riesia of human lice, Arsenophonus of louse flies, and Wigglesworthia of tsetse flies, which may be either due to convergent evolution in the blood-sucking host insects or reflecting the genomic architecture of Arsenophonus-allied bacteria.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era

          Abstract IQ-TREE (http://www.iqtree.org, last accessed February 6, 2020) is a user-friendly and widely used software package for phylogenetic inference using maximum likelihood. Since the release of version 1 in 2014, we have continuously expanded IQ-TREE to integrate a plethora of new models of sequence evolution and efficient computational approaches of phylogenetic inference to deal with genomic data. Here, we describe notable features of IQ-TREE version 2 and highlight the key advantages over other software.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads

            The Illumina DNA sequencing platform generates accurate but short reads, which can be used to produce accurate but fragmented genome assemblies. Pacific Biosciences and Oxford Nanopore Technologies DNA sequencing platforms generate long reads that can produce complete genome assemblies, but the sequencing is more expensive and error-prone. There is significant interest in combining data from these complementary sequencing technologies to generate more accurate “hybrid” assemblies. However, few tools exist that truly leverage the benefits of both types of data, namely the accuracy of short reads and the structural resolving power of long reads. Here we present Unicycler, a new tool for assembling bacterial genomes from a combination of short and long reads, which produces assemblies that are accurate, complete and cost-effective. Unicycler builds an initial assembly graph from short reads using the de novo assembler SPAdes and then simplifies the graph using information from short and long reads. Unicycler uses a novel semi-global aligner to align long reads to the assembly graph. Tests on both synthetic and real reads show Unicycler can assemble larger contigs with fewer misassemblies than other hybrid assemblers, even when long-read depth and accuracy are low. Unicycler is open source (GPLv3) and available at github.com/rrwick/Unicycler.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes

              Methods for evaluating the quality of genomic and metagenomic data are essential to aid genome assembly procedures and to correctly interpret the results of subsequent analyses. BUSCO estimates the completeness and redundancy of processed genomic data based on universal single-copy orthologs. Here, we present new functionalities and major improvements of the BUSCO software, as well as the renewal and expansion of the underlying data sets in sync with the OrthoDB v10 release. Among the major novelties, BUSCO now enables phylogenetic placement of the input sequence to automatically select the most appropriate BUSCO data set for the assessment, allowing the analysis of metagenome-assembled genomes of unknown origin. A newly introduced genome workflow increases the efficiency and runtimes especially on large eukaryotic genomes. BUSCO is the only tool capable of assessing both eukaryotic and prokaryotic species, and can be applied to various data types, from genome assemblies and metagenomic bins, to transcriptomes and gene sets.
                Bookmark

                Author and article information

                Contributors
                URI : http://loop.frontiersin.org/people/875787/overviewRole: Role: Role: Role: Role: Role:
                URI : http://loop.frontiersin.org/people/1108788/overviewRole: Role:
                URI : http://loop.frontiersin.org/people/2272694/overviewRole: Role:
                URI : http://loop.frontiersin.org/people/753738/overviewRole: Role: Role: Role: Role: Role:
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                22 January 2024
                2023
                : 14
                : 1336919
                Affiliations
                [1] 1Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba, Japan
                [2] 2Department of Biological Sciences, Graduate School of Science, The University of Tokyo , Tokyo, Japan
                [3] 3Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba, Japan
                Author notes

                Edited by: Amparo Latorre, University of Valencia, Spain

                Reviewed by: Xiao-Li Bing, Nanjing Agricultural University, China

                Arturo Vera-Ponce de León, Norwegian University of Life Sciences, Norway

                *Correspondence: Ryuichi Koga r-koga@ 123456aist.go.jp
                Article
                10.3389/fmicb.2023.1336919
                10841577
                38318130
                5d8e6ca0-cfdb-4328-a10d-281559386b5f
                Copyright © 2024 Koga, Moriyama, Nozaki and Fukatsu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 November 2023
                : 26 December 2023
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 49, Pages: 10, Words: 5569
                Funding
                Funded by: Japan Science and Technology Agency, doi 10.13039/501100002241;
                Funded by: Japan Society for the Promotion of Science, doi 10.13039/501100001691;
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by the Japan Science and Technology Agency (JST) ERATO Grant Number JPMJER1902 to RK and TF and by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant number JP17H06388 to TF.
                Categories
                Microbiology
                Original Research
                Custom metadata
                Microbial Symbioses

                Microbiology & Virology
                aschnera chinzeii,nycteribiid bat fly,penicillidia jenynsii,symbiotic bacteria,genome reduction,b vitamin provisioning,blood-sucking insect

                Comments

                Comment on this article