59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Benefit from B-Lymphocyte Depletion Using the Anti-CD20 Antibody Rituximab in Chronic Fatigue Syndrome. A Double-Blind and Placebo-Controlled Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Chronic fatigue syndrome (CFS) is a disease of unknown aetiology. Major CFS symptom relief during cancer chemotherapy in a patient with synchronous CFS and lymphoma spurred a pilot study of B-lymphocyte depletion using the anti-CD20 antibody Rituximab, which demonstrated significant clinical response in three CFS patients.

          Methods and Findings

          In this double-blind, placebo-controlled phase II study (NCT00848692), 30 CFS patients were randomised to either Rituximab 500 mg/m 2 or saline, given twice two weeks apart, with follow-up for 12 months. Xenotropic murine leukemia virus-related virus (XMRV) was not detected in any of the patients.

          The responses generally affected all CFS symptoms. Major or moderate overall response, defined as lasting improvements in self-reported Fatigue score during follow-up, was seen in 10 out of 15 patients (67%) in the Rituximab group and in two out of 15 patients (13%) in the Placebo group (p = 0.003). Mean response duration within the follow-up period for the 10 responders to Rituximab was 25 weeks (range 8–44). Four Rituximab patients had clinical response durations past the study period. General linear models for repeated measures of Fatigue scores during follow-up showed a significant interaction between time and intervention group (p = 0.018 for self-reported, and p = 0.024 for physician-assessed), with differences between the Rituximab and Placebo groups between 6–10 months after intervention. The primary end-point, defined as effect on self-reported Fatigue score 3 months after intervention, was negative. There were no serious adverse events. Two patients in the Rituximab group with pre-existing psoriasis experienced moderate psoriasis worsening.

          Conclusion

          The delayed responses starting from 2–7 months after Rituximab treatment, in spite of rapid B-cell depletion, suggests that CFS is an autoimmune disease and may be consistent with the gradual elimination of autoantibodies preceding clinical responses. The present findings will impact future research efforts in CFS.

          Trial registration

          ClinicalTrials.gov NCT00848692

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome.

          Chronic fatigue syndrome (CFS) is a debilitating disease of unknown etiology that is estimated to affect 17 million people worldwide. Studying peripheral blood mononuclear cells (PBMCs) from CFS patients, we identified DNA from a human gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV), in 68 of 101 patients (67%) as compared to 8 of 218 (3.7%) healthy controls. Cell culture experiments revealed that patient-derived XMRV is infectious and that both cell-associated and cell-free transmission of the virus are possible. Secondary viral infections were established in uninfected primary lymphocytes and indicator cell lines after their exposure to activated PBMCs, B cells, T cells, or plasma derived from CFS patients. These findings raise the possibility that XMRV may be a contributing factor in the pathogenesis of CFS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project.

            Rituximab improves outcomes for persons with lymphoproliferative disorders and is increasingly used to treat immune-mediated illnesses. Recent reports describe 2 patients with systemic lupus erythematosus and 1 with rheumatoid arthritis who developed progressive multifocal leukoencephalopathy (PML) after rituximab treatment. We reviewed PML case descriptions among patients treated with rituximab from the Food and Drug Administration, the manufacturer, physicians, and a literature review from 1997 to 2008. Overall, 52 patients with lymphoproliferative disorders, 2 patients with systemic lupus erythematosus, 1 patient with rheumatoid arthritis, 1 patient with an idiopathic autoimmune pancytopenia, and 1 patient with immune thrombocytopenia developed PML after treatment with rituximab and other agents. Other treatments included hematopoietic stem cell transplantation (7 patients), purine analogs (26 patients), or alkylating agents (39 patients). One patient with an autoimmune hemolytic anemia developed PML after treatment with corticosteroids and rituximab, and 1 patient with an autoimmune pancytopenia developed PML after treatment with corticosteroids, azathioprine, and rituximab. Median time from last rituximab dose to PML diagnosis was 5.5 months. Median time to death after PML diagnosis was 2.0 months. The case-fatality rate was 90%. Awareness is needed of the potential for PML among rituximab-treated persons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A short review on the psychoneuroimmunology of posttraumatic stress disorder: from risk factors to medical comorbidities.

              Posttraumatic stress disorder (PTSD) is a serious and debilitating condition with a prevalence rate of approximately 8% in the United States. Given the number of veterans returning from conflicts around the globe with PTSD, and the substantial number of civilians experiencing traumas, new perspectives on the biology of PTSD are needed. Based on the concept that PTSD is a disorder of stress response systems, numerous studies have suggested changes in hypothalamic-pituitary-adrenal (HPA) axis and sympathetic-adrenal-medullary (SAM) system function in patients with PTSD. Given that both glucocorticoids and catecholamines exert powerful effects on the immune system, it is surprising that relatively few studies have examined immune changes in patients with PTSD. Moreover, patients with PTSD are known to have increased rates of comorbidity with somatic disorders that involve immune and inflammatory processes. Patients with PTSD have been found to exhibit a number of immune changes including increased circulating inflammatory markers, increased reactivity to antigen skin tests, lower natural killer cell activity, and lower total T lymphocyte counts. Studies with humans and rodents suggest that certain proinflammatory cytokines are able to induce neurochemical and behavioral changes that resemble some key features of PTSD. This short article reviews immune alterations in PTSD, and considers possible mechanisms by which such changes may be related to neuroendocrine alterations and medical comorbidities of PTSD. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                19 October 2011
                : 6
                : 10
                : e26358
                Affiliations
                [1 ]Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
                [2 ]Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
                [3 ]Department of Neurology, Haukeland University Hospital, Bergen, Norway
                [4 ]Department of Immunology and Transfusion Medicine, Haukeland University Hospital, and The Gade Institute, University of Bergen, Bergen, Norway
                [5 ]Institute of Internal Medicine, Section of Oncology, University of Bergen, Bergen, Norway
                Innsbruck Medical University, Austria
                Author notes

                Conceived and designed the experiments: ØF OM. Performed the experiments: ØF OM OB KR DS AS EK HN. Analyzed the data: ØF OB KR DS EK OM. Contributed reagents/materials/analysis tools: ØF OM OB HN EK OD. Wrote the paper: ØF OM. Revised the manuscript: ØF OB KR DS AS EK H.Næss OD H.Nyland OM.

                Article
                PONE-D-11-11828
                10.1371/journal.pone.0026358
                3198463
                22039471
                5d20de1b-3d64-46bf-9094-43499fd329c6
                Fluge et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 June 2011
                : 25 September 2011
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Immunology
                Immune Cells
                B Cells
                Immunity
                Immunotherapy
                Autoimmunity
                Immunomodulation
                Immunopathology
                Medicine
                Anatomy and Physiology
                Immune Physiology
                Antibodies
                Clinical Immunology
                Immune Cells
                B Cells
                Immunity
                Immunotherapy
                Autoimmune Diseases
                Immunomodulation
                Immunopathology
                Clinical Research Design
                Clinical Trials
                Diagnostic Medicine
                Clinical Laboratory Sciences
                Clinical Immunology
                Drugs and Devices
                Clinical Pharmacology
                Mental Health
                Psychiatry
                Therapies
                Rheumatology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article