45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biogeographic consequences of nutrient enrichment for plant-herbivore interactions in coastal wetlands

      ,
      Ecology Letters
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A major challenge in ecology is to understand broadscale trends in the impact of environmental change. We provide the first integrative analysis of the effects of eutrophication on plants, herbivores, and their interactions in coastal wetlands across latitudes. We show that fertilisation strongly increases herbivory in salt marshes, but not in mangroves, and that this effect increases with increasing latitude in salt marshes. We further show that stronger nutrient effects on plant nitrogen concentration at higher latitudes is the mechanism likely underlying this pattern. This biogeographic variation in nutrient effects on plant-herbivore interactions has consequences for vegetation, with those at higher latitudes being more vulnerable to consumer pressure fuelled by eutrophication. Our work provides a novel, mechanistic understanding of how eutrophication affects plant-herbivore systems predictably across broad latitudinal gradients, and highlights the power of incorporating biogeography into understanding large-scale variability in the impacts of environmental change.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.

          The cycles of the key nutrient elements nitrogen (N) and phosphorus (P) have been massively altered by anthropogenic activities. Thus, it is essential to understand how photosynthetic production across diverse ecosystems is, or is not, limited by N and P. Via a large-scale meta-analysis of experimental enrichments, we show that P limitation is equally strong across these major habitats and that N and P limitation are equivalent within both terrestrial and freshwater systems. Furthermore, simultaneous N and P enrichment produces strongly positive synergistic responses in all three environments. Thus, contrary to some prevailing paradigms, freshwater, marine and terrestrial ecosystems are surprisingly similar in terms of N and P limitation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            EDITORIAL

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global patterns of plant leaf N and P in relation to temperature and latitude.

              A global data set including 5,087 observations of leaf nitrogen (N) and phosphorus (P) for 1,280 plant species at 452 sites and of associated mean climate indices demonstrates broad biogeographic patterns. In general, leaf N and P decline and the N/P ratio increases toward the equator as average temperature and growing season length increase. These patterns are similar for five dominant plant groups, coniferous trees and four angiosperm groups (grasses, herbs, shrubs, and trees). These results support the hypotheses that (i) leaf N and P increase from the tropics to the cooler and drier midlatitudes because of temperature-related plant physiological stoichiometry and biogeographical gradients in soil substrate age and then plateau or decrease at high latitudes because of cold temperature effects on biogeochemistry and (ii) the N/P ratio increases with mean temperature and toward the equator, because P is a major limiting nutrient in older tropical soils and N is the major limiting nutrient in younger temperate and high-latitude soils.
                Bookmark

                Author and article information

                Journal
                Ecology Letters
                Ecol Lett
                Wiley-Blackwell
                1461023X
                May 2015
                May 05 2015
                : 18
                : 5
                : 462-471
                Article
                10.1111/ele.12429
                25847464
                5cf1a09d-6381-4a59-a0e3-5cb494318591
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,484

                Cited by21

                Most referenced authors1,106