11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biosurfactant production by fungi as a sustainable alternative Translated title: Produção de biossurfactantes por fungos como uma alternativa sustentável

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT: A wide variety of bacteria is far more exploited than fungi as biosurfactants (BS) or bioemulsifiers (BE), using renewable sources. BS are considered to be environmentally safe and offer advantages over synthetic surfactants. However, the BS yield depends largely on the metabolic pathways of the microorganisms and the nutritional medium. The production of BS or BE uses several cultural conditions, in which a small change in carbon and nitrogen sources affects the quantity of BS or BE produced. The type and quantity of microbial BS or BE produced depend mainly on the producer organism, and factors such as carbon and nitrogen sources, trace elements, temperature and aeration. The diversity of BS or BE makes it interesting to apply them in the pharmaceutical and cosmetics industries, agriculture, public health, food processes, detergents, when treating oily residues, environmental pollution control and bioremediation. Thus, this paper reviews and addresses the biotechnological potential of yeasts and filamentous fungi for producing, characterizing and applying BS or BE.

          Translated abstract

          RESUMO: Uma grande variedade de espécies bacterianas é bem mais explorada que os fungos como agentes biossurfactantes (BS) ou bioemulsificantes (BE), usando fontes renováveis. Os BS são considerados ecologicamente seguros e oferecem vantagens sobre os surfactantes sintéticos. Entretanto o rendimento de BS depende grandemente das vias metabólicas dos micro-organismos e do meio nutricional. A produção de BS ou BE utiliza várias condições culturais, em que uma pequena alteração nas fontes de carbono e nitrogênio afeta a produção de BS. O tipo e a quantidade de BS ou BE microbianos produzidos dependem principalmente do organismo produtor e de fatores como fontes de carbono e nitrogênio, oligoelementos, temperatura e aeração. A diversidade de BS ou BE torna-os interessantes para aplicação nos campos farmacêutico, cosmético, da agricultura, da saúde pública, em processos alimentares, detergentes, no tratamento de resíduos oleosos, no controle de poluição ambiental e na biorremediação. Assim, a presente revisão aborda o potencial biotecnológico de leveduras e fungos filamentosos para produção, caracterização e aplicações de BS ou BE .

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial biosurfactants production, applications and future potential.

          Microorganisms synthesise a wide range of surface-active compounds (SAC), generally called biosurfactants. These compounds are mainly classified according to their molecular weight, physico-chemical properties and mode of action. The low-molecular-weight SACs or biosurfactants reduce the surface tension at the air/water interfaces and the interfacial tension at oil/water interfaces, whereas the high-molecular-weight SACs, also called bioemulsifiers, are more effective in stabilising oil-in-water emulsions. Biosurfactants are attracting much interest due to their potential advantages over their synthetic counterparts in many fields spanning environmental, food, biomedical, and other industrial applications. Their large-scale application and production, however, are currently limited by the high cost of production and by limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and the latest advances in biosurfactant applications and the biotechnological strategies being developed for improving production processes and future potential.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potential commercial applications of microbial surfactants.

            Surfactants are surface-active compounds capable of reducing surface and interfacial tension at the interfaces between liquids, solids and gases, thereby allowing them to mix or disperse readily as emulsions in water or other liquids. The enormous market demand for surfactants is currently met by numerous synthetic, mainly petroleum-based, chemical surfactants. These compounds are usually toxic to the environment and non-biodegradable. They may bio-accumulate and their production, processes and by-products can be environmentally hazardous. Tightening environmental regulations and increasing awareness for the need to protect the ecosystem have effectively resulted in an increasing interest in biosurfactants as possible alternatives to chemical surfactants. Biosurfactants are amphiphilic compounds of microbial origin with considerable potential in commercial applications within various industries. They have advantages over their chemical counterparts in biodegradability and effectiveness at extreme temperature or pH and in having lower toxicity. Biosurfactants are beginning to acquire a status as potential performance-effective molecules in various fields. At present biosurfactants are mainly used in studies on enhanced oil recovery and hydrocarbon bioremediation. The solubilization and emulsification of toxic chemicals by biosurfactants have also been reported. Biosurfactants also have potential applications in agriculture, cosmetics, pharmaceuticals, detergents, personal care products, food processing, textile manufacturing, laundry supplies, metal treatment and processing, pulp and paper processing and paint industries. Their uses and potential commercial applications in these fields are reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial production of surfactants and their commercial potential.

              Many microorganisms, especially bacteria, produce biosurfactants when grown on water-immiscible substrates. Biosurfactants are more effective, selective, environmentally friendly, and stable than many synthetic surfactants. Most common biosurfactants are glycolipids in which carbohydrates are attached to a long-chain aliphatic acid, while others, like lipopeptides, lipoproteins, and heteropolysaccharides, are more complex. Rapid and reliable methods for screening and selection of biosurfactant-producing microorganisms and evaluation of their activity have been developed. Genes involved in rhamnolipid synthesis (rhlAB) and regulation (rhlI and rhlR) in Pseudomonas aeruginosa are characterized, and expression of rhlAB in heterologous hosts is discussed. Genes for surfactin production (sfp, srfA, and comA) in Bacillus spp. are also characterized. Fermentative production of biosurfactants depends primarily on the microbial strain, source of carbon and nitrogen, pH, temperature, and concentration of oxygen and metal ions. Addition of water-immiscible substrates to media and nitrogen and iron limitations in the media result in an overproduction of some biosurfactants. Other important advances are the use of water-soluble substrates and agroindustrial wastes for production, development of continuous recovery processes, and production through biotransformation. Commercialization of biosurfactants in the cosmetic, food, health care, pulp- and paper-processing, coal, ceramic, and metal industries has been proposed. However, the most promising applications are cleaning of oil-contaminated tankers, oil spill management, transportation of heavy crude oil, enhanced oil recovery, recovery of crude oil from sludge, and bioremediation of sites contaminated with hydrocarbons, heavy metals, and other pollutants. Perspectives for future research and applications are also discussed.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                aib
                Arquivos do Instituto Biológico
                Arq. Inst. Biol.
                Instituto Biológico (São Paulo, SP, Brazil )
                0020-3653
                1808-1657
                September 2018
                : 85
                : 0
                : e0502017
                Affiliations
                [1] Recife Pernambuco orgnameUniversidade Católica de Pernambuco orgdiv1Faculdade de Ciências Biológicas orgdiv2Núcleo de Pesquisas em Ciências Ambientais e Biotecnologia Brazil
                Article
                S1808-16572018000100602
                10.1590/1808-1657000502017
                5ceea4cf-7198-43e3-b4b7-656d1435ab1c

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 06 June 2017
                : 23 March 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 96, Pages: 0
                Product

                SciELO Brazil


                surface active compounds,amphiphilic molecules,compostos de superfícies ativas,substratos agroindustriais,fungos,fungi,agroindustrial substrates,moléculas anfifílicas

                Comments

                Comment on this article