10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Physical origin and boundary of scalable imaging through scattering media: a deep learning-based exploration

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Imaging through scattering media is valuable for many areas, such as biomedicine and communication. Recent progress enabled by deep learning (DL) has shown superiority especially in the model generalization. However, there is a lack of research to physically reveal the origin or define the boundary for such model scalability, which is important for utilizing DL approaches for scalable imaging despite scattering with high confidence. In this paper, we find the amount of the ballistic light component in the output field is the prerequisite for endowing a DL model with generalization capability by using a “one-to-all” training strategy, which offers a physical meaning invariance among the multisource data. The findings are supported by both experimental and simulated tests in which the roles of scattered and ballistic components are revealed in contributing to the origin and physical boundary of the model scalability. Experimentally, the generalization performance of the network is enhanced by increasing the portion of ballistic photons in detection. The mechanism understanding and practical guidance by our research are beneficial for developing DL methods for descattering with high adaptivity.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Optical coherence tomography

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Going deeper than microscopy: the optical imaging frontier in biology.

            Optical microscopy has been a fundamental tool of biological discovery for more than three centuries, but its in vivo tissue imaging ability has been restricted by light scattering to superficial investigations, even when confocal or multiphoton methods are used. Recent advances in optical and optoacoustic (photoacoustic) imaging now allow imaging at depths and resolutions unprecedented for optical methods. These abilities are increasingly important to understand the dynamic interactions of cellular processes at different systems levels, a major challenge of postgenome biology. This Review discusses promising photonic methods that have the ability to visualize cellular and subcellular components in tissues across different penetration scales. The methods are classified into microscopic, mesoscopic and macroscopic approaches, according to the tissue depth at which they operate. Key characteristics associated with different imaging implementations are described and the potential of these technologies in biological applications is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deep tissue two-photon microscopy.

              With few exceptions biological tissues strongly scatter light, making high-resolution deep imaging impossible for traditional-including confocal-fluorescence microscopy. Nonlinear optical microscopy, in particular two photon-excited fluorescence microscopy, has overcome this limitation, providing large depth penetration mainly because even multiply scattered signal photons can be assigned to their origin as the result of localized nonlinear signal generation. Two-photon microscopy thus allows cellular imaging several hundred microns deep in various organs of living animals. Here we review fundamental concepts of nonlinear microscopy and discuss conditions relevant for achieving large imaging depths in intact tissue.
                Bookmark

                Author and article information

                Contributors
                Journal
                Photonics Research
                Photon. Res.
                Optica Publishing Group
                2327-9125
                2023
                2023
                May 26 2023
                June 01 2023
                : 11
                : 6
                : 1038
                Article
                10.1364/PRJ.490125
                5c94ee5f-6af7-46fb-ade1-7b574c347a3d
                © 2023
                History

                Comments

                Comment on this article