14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FZD7 regulates BMSCs-mediated protection of CML cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inspite of effective treatment with imatinib (IM), chronic myeloid leukemia (CML) is still an incurable disease. Some patients became refractory because of IM resistance. Bone marrow mesenchymal stem cells (BMSCs) have been implicated a role in promoting CML cells' resistance against IM treatment. The detailed molecular mechanisms, however, remain largely unknown. In this study, we found that BMSCs increased the expression of FZD7 and activated Wnt/β-catenin signaling pathway in CML cells. BMSCs from CML patients showed increased efficiency to accelerate CML cell proliferation, enhance the drug resistance of K562 cells and up-regulate the expression of FZD7. Antagonism of FZD7 expression by shRNA significantly suppressed proliferation and increased IM sensitivity of CML cells co-cultured with BMSCs cells. Our findings suggest that FZD7, involved in canonical Wnt signaling pathway, plays a critical role in mediating BMSCs-dependent protection of CML cells, and potentially provide a novel therapeutic target for CML.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013.

          Advances in chronic myeloid leukemia treatment, particularly regarding tyrosine kinase inhibitors, mandate regular updating of concepts and management. A European LeukemiaNet expert panel reviewed prior and new studies to update recommendations made in 2009. We recommend as initial treatment imatinib, nilotinib, or dasatinib. Response is assessed with standardized real quantitative polymerase chain reaction and/or cytogenetics at 3, 6, and 12 months. BCR-ABL1 transcript levels ≤10% at 3 months, 10% at 6 months and >1% from 12 months onward define failure, mandating a change in treatment. Similarly, partial cytogenetic response (PCyR) at 3 months and complete cytogenetic response (CCyR) from 6 months onward define optimal response, whereas no CyR (Philadelphia chromosome-positive [Ph+] >95%) at 3 months, less than PCyR at 6 months, and less than CCyR from 12 months onward define failure. Between optimal and failure, there is an intermediate warning zone requiring more frequent monitoring. Similar definitions are provided for response to second-line therapy. Specific recommendations are made for patients in the accelerated and blastic phases, and for allogeneic stem cell transplantation. Optimal responders should continue therapy indefinitely, with careful surveillance, or they can be enrolled in controlled studies of treatment discontinuation once a deeper molecular response is achieved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche.

            Multipotent stromal cells (MSCs) and their osteoblastic lineage cell (OBC) derivatives are part of the bone marrow (BM) niche and contribute to hematopoietic stem cell (HSC) maintenance. Here, we show that myeloproliferative neoplasia (MPN) progressively remodels the endosteal BM niche into a self-reinforcing leukemic niche that impairs normal hematopoiesis, favors leukemic stem cell (LSC) function, and contributes to BM fibrosis. We show that leukemic myeloid cells stimulate MSCs to overproduce functionally altered OBCs, which accumulate in the BM cavity as inflammatory myelofibrotic cells. We identify roles for thrombopoietin, CCL3, and direct cell-cell interactions in driving OBC expansion, and for changes in TGF-β, Notch, and inflammatory signaling in OBC remodeling. MPN-expanded OBCs, in turn, exhibit decreased expression of many HSC retention factors and severely compromised ability to maintain normal HSCs, but effectively support LSCs. Targeting this pathological interplay could represent a novel avenue for treatment of MPN-affected patients and prevention of myelofibrosis. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The biology of chronic myeloid leukemia.

                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                2 February 2016
                23 December 2015
                : 7
                : 5
                : 6175-6187
                Affiliations
                1 Department of Hematology Qilu Hospital, Shandong University, Ji'nan 250012, China
                2 Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Ji'nan 250014, China
                Author notes
                Correspondence to: Chunyan Ji, jichunyan@ 123456sdu.edu.cn
                Article
                6742
                10.18632/oncotarget.6742
                4868748
                26716419
                5c8ee890-d24c-4e37-8f04-1cd823605069
                Copyright: © 2016 Liu et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 June 2015
                : 9 December 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                fzd7,cml,bmscs,imatinib sensitivity,wnt signaling pathway
                Oncology & Radiotherapy
                fzd7, cml, bmscs, imatinib sensitivity, wnt signaling pathway

                Comments

                Comment on this article