19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          End-of-season drought or “terminal drought,” which occurs after flowering, is considered the most significant abiotic stress affecting crop yields. Wheat crop production in Mediterranean-type environments is often exposed to terminal drought due to decreasing rainfall and rapid increases in temperature and evapotranspiration during spring when wheat crops enter the reproductive stage. Under such conditions, every millimeter of extra soil water extracted by the roots benefits grain filling and yield and improves water use efficiency (WUE). When terminal drought develops, soil dries from the top, exposing the top part of the root system to dry soil while the bottom part is in contact with available soil water. Plant roots sense the drying soil and produce signals, which on transmission to shoots trigger stomatal closure to regulate crop water use through transpiration. However, transpiration is linked to crop growth and productivity and limiting transpiration may reduce potential yield. While an early and high degree of stomatal closure affects photosynthesis and hence biomass production, a late and low degree of stomatal closure exhausts available soil water rapidly which results in yield losses through a reduction in post-anthesis water use. The plant hormone abscisic acid (ABA) is considered the major chemical signal involved in stomatal regulation. Wheat genotypes differ in their ability to produce ABA under drought and also in their stomatal sensitivity to ABA. In this viewpoint article we discuss the possibilities of exploiting genotypic differences in ABA response to soil drying in regulating the use of water under terminal drought. Root density distribution in the upper drying layers of the soil profile is identified as a candidate trait that can affect ABA accumulation and subsequent stomatal closure. We also examine whether leaf ABA can be designated as a surrogate characteristic for improved WUE in wheat to sustain grain yield under terminal drought. Ease of collecting leaf samples to quantify ABA compared to extracting xylem sap will facilitate rapid screening of a large number of germplasm for drought tolerance.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants.

          Experimental studies on CO2 assimilation of mesophytic C3 plants in relation to relative water content (RWC) are discussed. Decreasing RWC slows the actual rate of photosynthetic CO2 assimilation (A) and decreases the potential rate (Apot). Generally, as RWC falls from c. 100 to c. 75%, the stomatal conductance (gs) decreases, and with it A. However, there are two general types of relation of Apot to RWC, which are called Type 1 and Type 2. Type 1 has two main phases. As RWC decreases from 100 to c. 75%, Apot is unaffected, but decreasing stomatal conductance (gs) results in smaller A, and lower CO2 concentration inside the leaf (Ci) and in the chloroplast (Cc), the latter falling possibly to the compensation point. Down-regulation of electron transport occurs by energy quenching mechanisms, and changes in carbohydrate and nitrogen metabolism are considered acclimatory, caused by low Ci and reversible by elevated CO2. Below 75% RWC, there is metabolic inhibition of Apot, inhibition of A then being partly (but progressively less) reversible by elevated CO2; gs regulates A progressively less, and Ci and CO2 compensation point, Gamma rise. It is suggested that this is the true stress phase, where the decrease in Apot is caused by decreased ATP synthesis and a consequent decreased synthesis of RuBP. In the Type 2 response, Apot decreases progressively at RWC 100 to 75%, with A being progressively less restored to the unstressed value by elevated CO2. Decreased gs leads to a lower Ci and Cc but they probably do not reach compensation point: gs becomes progressively less important and metabolic limitations more important as RWC falls. The primary effect of low RWC on Apot is most probably caused by limited RuBP synthesis, as a result of decreased ATP synthesis, either through inhibition of Coupling Factor activity or amount due to increased ion concentration. Carbohydrate synthesis and accumulation decrease. Type 2 response is considered equivalent to Type 1 at RWC below c. 75%, with Apot inhibited by limited ATP and RuBP synthesis, respiratory metabolism dominates and Ci and Gamma rise. The importance of inhibited ATP synthesis as a primary cause of decreasing Apot is discussed. Factors determining the Type 1 and Type 2 responses are unknown. Electron transport is maintained (but down-regulated) in Types 1 and 2 over a wide range of RWC, and a large reduced/oxidized adenylate ratio results. Metabolic imbalance results in amino acid accumulation and decreased and altered protein synthesis. These conditions profoundly affect cell functions and ultimately cause cell death. Type 1 and 2 responses may reflect differences in gs and in sensitivity of metabolism to decreasing RWC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

            Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diffusive and metabolic limitations to photosynthesis under drought and salinity in C(3) plants.

              Drought and salinity are two widespread environmental conditions leading to low water availability for plants. Low water availability is considered the main environmental factor limiting photosynthesis and, consequently, plant growth and yield worldwide. There has been a long-standing controversy as to whether drought and salt stresses mainly limit photosynthesis through diffusive resistances or by metabolic impairment. Reviewing in vitro and in vivo measurements, it is concluded that salt and drought stress predominantly affect diffusion of CO(2) in the leaves through a decrease of stomatal and mesophyll conductances, but not the biochemical capacity to assimilate CO(2), at mild to rather severe stress levels. The general failure of metabolism observed at more severe stress suggests the occurrence of secondary oxidative stresses, particularly under high-light conditions. Estimates of photosynthetic limitations based on the photosynthetic response to intercellular CO(2) may lead to artefactual conclusions, even if patchy stomatal closure and the relative increase of cuticular conductance are taken into account, as decreasing mesophyll conductance can cause the CO(2) concentration in chloroplasts of stressed leaves to be considerably lower than the intercellular CO(2) concentration. Measurements based on the photosynthetic response to chloroplast CO(2) often confirm that the photosynthetic capacity is preserved but photosynthesis is limited by diffusive resistances in drought and salt-stressed leaves.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                18 July 2017
                2017
                : 8
                : 1251
                Affiliations
                [1] 1School of Agriculture and Environment, The University of Western Australia, Perth WA, Australia
                [2] 2The UWA Institute of Agriculture, The University of Western Australia, Perth WA, Australia
                [3] 3CSIRO Agriculture and Food, Wembley WA, Australia
                Author notes

                Edited by: Partha Sarathi Basu, Indian Institute of Pulses Research, India

                Reviewed by: Khawar Jabran, Duzce University, Turkey; Paramita Basu, Adamas University, India

                *Correspondence: Renu Saradadevi, renusaradadevi@ 123456gmail.com

                This article was submitted to Crop Science and Horticulture, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.01251
                5513975
                28769957
                5c788656-aff8-4e46-a9a9-e924c60983a9
                Copyright © 2017 Saradadevi, Palta and Siddique.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 February 2017
                : 03 July 2017
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 160, Pages: 14, Words: 0
                Categories
                Plant Science
                Review

                Plant science & Botany
                abscisic acid,stomatal conductance,water use efficiency,root hydraulic conductivity,grain yield

                Comments

                Comment on this article