1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emission trends of air pollutants and CO 2 in China from 2005 to 2021

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. China is facing the challenge of synergistic reduction of air pollutants and CO2 emissions. However, the studies on its historical progress and future priorities are insufficient. This study compiled China's emission inventory of air pollutants and CO2 from 2005 to 2021 (ABaCAS-EI v2.0 dataset) based on a unified emission-source framework by considering the influences of activity level, technology evolution, and emission control policies. The characteristics of air pollutants and CO2 emissions were comprehensively analyzed from multiple dimensions such as time, space, sector, and synergies between air pollutants and CO2 emissions. Mitigation policies have decoupled the emissions of air pollutants and CO2 with economic development in China since 2013. In the context of growing activity levels, energy structure adjustment and energy and material saving reduced the average annual increase rate of CO2 emissions by 7 % after 2011. Based on this, end-of-pipe control contributed 51 %–98 % of air pollutant emission reductions after 2013. Industrial boilers and residential fossil fuel combustion sectors in seven provinces (Beijing, Tianjin, Shanghai, Jilin, Henan, Sichuan, and Qinghai) achieved emission reductions in both air pollutants and CO2 during 2013–2021. The declining trends in both the sectoral and regional emission ratios of air pollutants to CO2 indicated that the potential for synergistic emission reduction in China declined from 2013 to 2021. The emission ratios in 2021 showed that residential fossil fuel combustion, iron and steel industry, and transportation exhibited relatively higher co-benefits of SO2, PM2.5, NOx, and VOC emission reductions when CO2 emissions were reduced. Most cities with a higher potential to synergistically reduce NOx, VOC, and CO2 emissions were within the Yangtze River Economic Belt, while those with a higher potential to co-control SO2 and CO2, and PM2.5 and CO2 were in southern and northeast China, respectively. Further deconstruction of the sectoral emissions in 2021 suggested future reduction measures: for example, controlling coal consumption in the energy field; promoting innovative technologies with low air pollutant emission intensities and coal-saving measures in the iron and steel industry; combining coal and carbonate replacement technologies with separated particle control measures in the cement industry; and controlling light-duty passenger vehicles, heavy-duty trucks, agricultural machinery, and inland water transport in the transportation sector. Our dataset and findings provide insights into the co-control of air pollutants and CO2 emissions in the future in China and other countries with the same demand. Our ABaCAS-EI v2.0 dataset can be accessed from https://doi.org/10.6084/m9.figshare.21777005.v1 (S. Li et al., 2022) by species, sector, and province.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions

          Abstract. To tackle the problem of severe air pollution, China has implemented active clean air policies in recent years. As a consequence, the emissions of major air pollutants have decreased and the air quality has substantially improved. Here, we quantified China's anthropogenic emission trends from 2010 to 2017 and identified the major driving forces of these trends by using a combination of bottom-up emission inventory and index decomposition analysis (IDA) approaches. The relative change rates of China's anthropogenic emissions during 2010–2017 are estimated as follows: −62 % for SO 2 , −17 % for NO x , +11 % for nonmethane volatile organic compounds (NMVOCs), +1 % for NH 3 , −27 % for CO, −38 % for PM 10 , −35 % for PM 2.5 , −27 % for BC, −35 % for OC, and +16 % for CO 2 . The IDA results suggest that emission control measures are the main drivers of this reduction, in which the pollution controls on power plants and industries are the most effective mitigation measures. The emission reduction rates markedly accelerated after the year 2013, confirming the effectiveness of China's Clean Air Action that was implemented since 2013. We estimated that during 2013–2017, China's anthropogenic emissions decreased by 59 % for SO 2 , 21 % for NO x , 23 % for CO, 36 % for PM 10 , 33 % for PM 2.5 , 28 % for BC, and 32 % for OC. NMVOC emissions increased and NH 3 emissions remained stable during 2010–2017, representing the absence of effective mitigation measures for NMVOCs and NH 3 in current policies. The relative contributions of different sectors to emissions have significantly changed after several years' implementation of clean air policies, indicating that it is paramount to introduce new policies to enable further emission reductions in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Drivers of improved PM 2.5 air quality in China from 2013 to 2017

            Significance The high frequency of haze pollution in China has attracted broad attention and triggered, in 2013, the promulgation of the toughest-ever clean air policy in the country. In this study, we quantified the air quality and health benefits from specific clean air actions by combining a chemical transport model with a detailed emission inventory. As tremendous efforts and resources are needed for mitigating emissions from various sources, evaluation of the effectiveness of these measures can provide crucial information for developing air quality policies in China as well as in other developing and highly polluting countries. Based on measure-specific analysis, our results bear out several important implications for designing future clean air policies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              High resolution temporal profiles in the Emissions Database for Global Atmospheric Research

              Emissions into the atmosphere from human activities show marked temporal variations, from inter-annual to hourly levels. The consolidated practice of calculating yearly emissions follows the same temporal allocation of the underlying annual statistics. However, yearly emissions might not reflect heavy pollution episodes, seasonal trends, or any time-dependant atmospheric process. This study develops high-time resolution profiles for air pollutants and greenhouse gases co- emitted by anthropogenic sources in support of atmospheric modelling, Earth observation communities and decision makers. The key novelties of the Emissions Database for Global Atmospheric Research (EDGAR) temporal profiles are the development of (i) country/region- and sector- specific yearly profiles for all sources, (ii) time dependent yearly profiles for sources with inter-annual variability of their seasonal pattern, (iii) country- specific weekly and daily profiles to represent hourly emissions, (iv) a flexible system to compute hourly emissions including input from different users. This work creates a harmonized emission temporal distribution to be applied to any emission database as input for atmospheric models, thus promoting homogeneity in inter-comparison exercises.
                Bookmark

                Author and article information

                Contributors
                Journal
                Earth System Science Data
                Earth Syst. Sci. Data
                Copernicus GmbH
                1866-3516
                2023
                June 06 2023
                : 15
                : 6
                : 2279-2294
                Article
                10.5194/essd-15-2279-2023
                5c764063-748f-401c-9e2c-1bf998b4ff6f
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article