31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Top-Down Influences of the Medial Olivocochlear Efferent System in Speech Perception in Noise

      research-article
      1 , 2 , * , 1
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the putative functions of the medial olivocochlear (MOC) system is to enhance signal detection in noise. The objective of this study was to elucidate the role of the MOC system in speech perception in noise. In normal-hearing human listeners, we examined (1) the association between magnitude of MOC inhibition and speech-in-noise performance, and (2) the association between MOC inhibition and the amount of contralateral acoustic stimulation (CAS)-induced shift in speech-in-noise acuity. MOC reflex measurements in this study considered critical measurement issues overlooked in past work by: recording relatively low-level, linear click-evoked otoacoustic emissions (CEOAEs), adopting 6 dB signal-to-noise ratio (SNR) criteria, and computing normalized CEOAE differences. We found normalized index to be a stable measure of MOC inhibition (mean = 17.21%). MOC inhibition was not related to speech-in-noise performance measured without CAS. However, CAS in a speech-in-noise task caused an SNR SP enhancement (mean = 2.45 dB), and this improvement in speech-in-noise acuity was directly related to their MOC reflex assayed by CEOAEs. Individuals do not necessarily use the available MOC-unmasking characteristic while listening to speech in noise, or do not utilize unmasking to the extent that can be shown by artificial MOC activation. It may be the case that the MOC is not actually used under natural listening conditions and the higher auditory centers recruit MOC-mediated mechanisms only in specific listening conditions–those conditions remain to be investigated.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Measuring agreement in method comparison studies.

          Agreement between two methods of clinical measurement can be quantified using the differences between observations made using the two methods on the same subjects. The 95% limits of agreement, estimated by mean difference +/- 1.96 standard deviation of the differences, provide an interval within which 95% of differences between measurements by the two methods are expected to lie. We describe how graphical methods can be used to investigate the assumptions of the method and we also give confidence intervals. We extend the basic approach to data where there is a relationship between difference and magnitude, both with a simple logarithmic transformation approach and a new, more general, regression approach. We discuss the importance of the repeatability of each method separately and compare an estimate of this to the limits of agreement. We extend the limits of agreement approach to data with repeated measurements, proposing new estimates for equal numbers of replicates by each method on each subject, for unequal numbers of replicates, and for replicated data collected in pairs, where the underlying value of the quantity being measured is changing. Finally, we describe a nonparametric approach to comparing methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans.

            This review covers the basic anatomy and physiology of the olivocochlear reflexes and the use of otoacoustic emissions (OAEs) in humans to monitor the effects of one group, the medial olivocochlear (MOC) efferents. MOC fibers synapse on outer hair cells (OHCs), and activation of these fibers inhibits basilar membrane responses to low-level sounds. This MOC-induced decrease in the gain of the cochlear amplifier is reflected in changes in OAEs. Any OAE can be used to monitor MOC effects on the cochlear amplifier. Each OAE type has its own advantages and disadvantages. The most straightforward technique for monitoring MOC effects is to elicit MOC activity with an elicitor sound contralateral to the OAE test ear. MOC effects can also be monitored using an ipsilateral elicitor of MOC activity, but the ipsilateral elicitor brings additional problems caused by suppression and cochlear slow intrinsic effects. To measure MOC effects accurately, one must ensure that there are no middle-ear-muscle contractions. Although standard clinical middle-ear-muscle tests are not adequate for this, adequate tests can usually be done with OAE-measuring instruments. An additional complication is that most probe sounds also elicit MOC activity, although this does not prevent the probe from showing MOC effects elicited by contralateral sound. A variety of data indicate that MOC efferents help to reduce acoustic trauma and lessen the masking of transients by background noise; for instance, they aid in speech comprehension in noise. However, much remains to be learned about the role of efferents in auditory function. Monitoring MOC effects in humans using OAEs should continue to provide valuable insights into the role of MOC efferents and may also provide clinical benefits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones.

              1. The effects of olivocochlear (OC) feedback on signal processing in the cochlea were studied by comparing responses seen with and without a contralateral noise or by comparing responses seen before and after cutting the OC bundle (OCB). Adding and subtracting a contralateral noise is a convenient, reversible way of changing the level of OC feedback; however, it fully reveals only the contribution of the contralaterally responsive efferent fibers. Cutting the OCB can reveal the full contribution of all fibers in the OCB; however, the manipulation can only be performed once per experiment. 2. The amplitude of the compound action potential (CAP), recorded from anesthetized or decerebrate cats in response to tone pips, could be increased by addition of contralateral noise at moderate sound pressure levels. These enhancement phenomena were most easily demonstrable when the tone pips were masked by ipsilateral broadband noise; however, in some animals CAP enhancement was seen in the absence of ipsilateral maskers. Enhancement-in-quiet may arise because of internal masking from animal-generated noise. All contralateral-noise enhancement disappeared when the OCB was cut. 3. Enhancement effects of contralateral noise could be seen in both simultaneous and forward-masking paradigms. Enhancement was largest for high-frequency tone pips (8-16 kHz) and could be demonstrated over a wide range of tone-pip levels and ipsilateral-masker levels. Suppression of CAP by the contralateral noise was often seen for lower tone-pip frequencies (2-8 kHz) and lower tone-pip intensities. These trends may be understood in the context of known properties of OC peripheral effects and known properties of physiological masking. 4. Cutting the OCB resulted in a decrease in CAP amplitudes to masked tone pips. When CAP was measured to tone pips presented in equilevel, binaural noise, OCB section resulted in a decrease in CAP amplitudes equivalent to at least a 6-dB decrease in signal-to-noise ratio. Such antimasking effects of an intact OCB were seen in both simultaneous and forward-masking paradigms. 5. Present evidence suggests that all these antimasking effects can be explained on the basis of activation of the medial OC fibers to the outer hair cells. By suppressing responses to continuous noise backgrounds, the OC reflex may enhance responses to transient masked stimuli by decreasing the level of adaptation in auditory nerve fibers. Such effects of the OC reflex should improve discrimination of transient signals presented in a continuous noise background.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                20 January 2014
                : 9
                : 1
                : e85756
                Affiliations
                [1 ]Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom
                [2 ]Department of Communication Sciences and Disorders, Butler University, Indianapolis, Indiana, United States of America
                Utrecht University, Netherlands
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SM ML. Performed the experiments: SM. Analyzed the data: SM. Contributed reagents/materials/analysis tools: SM ML. Wrote the paper: SM ML. Mentored the work: ML.

                Article
                PONE-D-13-41046
                10.1371/journal.pone.0085756
                3896402
                24465686
                5c67bbe6-5609-48f4-b5ec-152d285cc024
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 September 2013
                : 1 December 2013
                Page count
                Pages: 6
                Funding
                This research was supported by a grant (EMFnEAR) from the European Commission, Directorate-General for Health and Consumer Protection (Grant No. 2004127) and a Rayleigh scholarship from the Institute of Sound and Vibration Research, University of Southampton, Southampton, UK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Neuroscience
                Sensory Systems
                Auditory System
                Behavioral Neuroscience
                Cognitive Neuroscience
                Neurophysiology
                Medicine
                Anatomy and Physiology
                Neurological System
                Nervous System Physiology
                Sensory Physiology
                Otorhinolaryngology
                Otology
                Hearing Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article