2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep and fast Solar System flybys: the controversial case of WD 0810-353

      ,
      Astronomy & Astrophysics
      EDP Sciences

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context. Most flybys in the Galactic disk are distant, beyond 10 4 AU, and have characteristic velocities of ~70 km s −1. However, deep and fast encounters also take place, albeit with lower probability, particularly if one of the objects involved is a stellar remnant ejected during a supernova. WD 0810-353 might be a high velocity white dwarf, and it was recently identified as heading straight for the Solar System; however, the Gaia DR3 data that support its future deep and fast flyby are regarded as suspicious.

          Aims. Here, we reanalyze the Gaia DR3 data set associated with WD 0810-353 to confirm or reject the reality of its Solar System flyby and also to investigate its possible runaway status.

          Methods. We studied the evolution of WD 0810-353 forward in time using N-body simulations. We computed the distribution of distances of closest approach and their associated times of perihelion passage. We used a statistical analysis of the kinematics of this object to assess its possible hypervelocity. We compared its mean BP/RP spectrum to those of other well-studied white dwarfs.

          Results. We confirm that WD 0810-353 is headed for the Solar System, but the actual parameters of the encounter depend strongly on its radial velocity. The Gaia DR3 value of −373.74 ± 8.18 km s −1 is strongly disfavored by our analyses. Its mean BP/RP spectrum suggests a value over ten times higher based on the position of its putative H α line. However, spectral matching using other white dwarfs with non- Gaia data indicate a radial velocity in the interval (−60, −70) km s −1.

          Conclusions. These results confirm the future flyby of WD 0810-353 near the Solar System, although the relative velocity could be high enough or the minimum approach distance large enough to preclude any significant perturbation on the Oort cloud.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found

          Matplotlib: A 2D Graphics Environment

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Array programming with NumPy

            Array programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves 1 and in the first imaging of a black hole 2 . Here we review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation upon which the scientific Python ecosystem is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Owing to its central position in the ecosystem, NumPy increasingly acts as an interoperability layer between such array computation libraries and, together with its application programming interface (API), provides a flexible framework to support the next decade of scientific and industrial analysis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Astropy: A community Python package for astronomy

                Bookmark

                Author and article information

                Journal
                Astronomy & Astrophysics
                A&A
                EDP Sciences
                0004-6361
                1432-0746
                December 2022
                November 29 2022
                December 2022
                : 668
                : A14
                Article
                10.1051/0004-6361/202245020
                5be80ef4-c864-4ffc-b116-217aeb8e915a
                © 2022

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article