2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gauging innovation and health impact from biomedical research: survey results and interviews with recipients of EU-funding in the fields of Alzheimer’s disease, breast cancer and prostate cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biomedical research on Alzheimer’s disease (AD), breast cancer (BC) and prostate cancer (PC) has globally improved our understanding of the etiopathological mechanisms underlying the onset of these diseases, often with the goal to identify associated genetic and environmental risk factors and develop new medicines. However, the prevalence of these diseases and failure rate in drug development remain high. Being able to retrospectively monitor the major scientific breakthroughs and impact of such investment endeavors is important to re-address funding strategies if and when needed. The EU has supported research into those diseases via its successive framework programmes for research, technological development and innovation. The European Commission (EC) has already undertaken several activities to monitor research impact. As an additional contribution, the EC Joint Research Centre (JRC) launched in 2020 a survey addressed to former and current participants of EU-funded research projects in the fields of AD, BC and PC, with the aim to understand how EU-funded research has contributed to scientific innovation and societal impact, and how the selection of the experimental models may have underpinned the advances made. Further feedback was also gathered through in-depth interviews with some selected survey participants representative of the diverse pre-clinical models used in the EU-funded projects. A comprehensive analysis of survey replies, complemented with the information derived from the interviews, has recently been published in a Synopsis report. Here we discuss the main findings of this analysis and propose a set of priority actions that could be considered to help improving the translation of scientific innovation of biomedical research into societal impact.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12961-023-00981-z.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Human organoids: model systems for human biology and medicine

          The historical reliance of biological research on the use of animal models has sometimes made it challenging to address questions that are specific to the understanding of human biology and disease. But with the advent of human organoids — which are stem cell-derived 3D culture systems — it is now possible to re-create the architecture and physiology of human organs in remarkable detail. Human organoids provide unique opportunities for the study of human disease and complement animal models. Human organoids have been used to study infectious diseases, genetic disorders and cancers through the genetic engineering of human stem cells, as well as directly when organoids are generated from patient biopsy samples. This Review discusses the applications, advantages and disadvantages of human organoids as models of development and disease and outlines the challenges that have to be overcome for organoids to be able to substantially reduce the need for animal experiments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Estimation of clinical trial success rates and related parameters

            SUMMARY Previous estimates of drug development success rates rely on relatively small samples from databases curated by the pharmaceutical industry and are subject to potential selection biases. Using a sample of 406 038 entries of clinical trial data for over 21 143 compounds from January 1, 2000 to October 31, 2015, we estimate aggregate clinical trial success rates and durations. We also compute disaggregated estimates across several trial features including disease type, clinical phase, industry or academic sponsor, biomarker presence, lead indication status, and time. In several cases, our results differ significantly in detail from widely cited statistics. For example, oncology has a 3.4% success rate in our sample vs. 5.1% in prior studies. However, after declining to 1.7% in 2012, this rate has improved to 2.5% and 8.3% in 2014 and 2015, respectively. In addition, trials that use biomarkers in patient-selection have higher overall success probabilities than trials without biomarkers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Alzheimer’s disease drug-development pipeline: few candidates, frequent failures

              Introduction Alzheimer’s disease (AD) is increasing in frequency as the global population ages. Five drugs are approved for treatment of AD, including four cholinesterase inhibitors and an N-methyl-D-aspartate (NMDA)-receptor antagonist. We have an urgent need to find new therapies for AD. Methods We examined Clinicaltrials.gov, a public website that records ongoing clinical trials. We examined the decade of 2002 to 2012, to better understand AD-drug development. We reviewed trials by sponsor, sites, drug mechanism of action, duration, number of patients required, and rate of success in terms of advancement from one phase to the next. We also reviewed the current AD therapy pipeline. Results During the 2002 to 2012 observation period, 413 AD trials were performed: 124 Phase 1 trials, 206 Phase 2 trials, and 83 Phase 3 trials. Seventy-eight percent were sponsored by pharmaceutical companies. The United States of America (U.S.) remains the single world region with the greatest number of trials; cumulatively, more non-U.S. than U.S. trials are performed. The largest number of registered trials addressed symptomatic agents aimed at improving cognition (36.6%), followed by trials of disease-modifying small molecules (35.1%) and trials of disease-modifying immunotherapies (18%). The mean length of trials increases from Phase 2 to Phase 3, and the number of participants in trials increases between Phase 2 and Phase 3. Trials of disease-modifying agents are larger and longer than those for symptomatic agents. A very high attrition rate was found, with an overall success rate during the 2002 to 2012 period of 0.4% (99.6% failure). Conclusions The Clinicaltrials.gov database demonstrates that relatively few clinical trials are undertaken for AD therapeutics, considering the magnitude of the problem. The success rate for advancing from one phase to another is low, and the number of compounds progressing to regulatory review is among the lowest found in any therapeutic area. The AD drug-development ecosystem requires support.
                Bookmark

                Author and article information

                Contributors
                Pierre.deceuninck@ec.europa.eu
                Journal
                Health Res Policy Syst
                Health Res Policy Syst
                Health Research Policy and Systems
                BioMed Central (London )
                1478-4505
                29 June 2023
                29 June 2023
                2023
                : 21
                : 66
                Affiliations
                [1 ]GRID grid.434554.7, ISNI 0000 0004 1758 4137, European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, ; Via E. Fermi 2749, 21027 Ispra, VA Italy
                [2 ]GRID grid.270680.b, European Commission, DG Research & Innovation (DG RTD), ; Brussels, Belgium
                Author information
                http://orcid.org/0000-0002-8513-2584
                Article
                981
                10.1186/s12961-023-00981-z
                10308747
                5ba93628-c416-499e-81fc-a71a33c86b6d
                © European Union 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 3 October 2022
                : 5 April 2023
                Categories
                Review
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Health & Social care
                alzheimer’s disease,breast cancer,prostate cancer,biomedical research,impact,eu funding,indicators,non-animal models

                Comments

                Comment on this article