0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Glymphatic pathway in sporadic cerebral small vessel diseases: From bench to bedside

      , , , , ,
      Ageing Research Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto" id="d1947921e115">Cerebral small vessel diseases (CSVD) consist of a group of diseases with high heterogeneity induced by pathologies of intracranial small blood vessels. Endothelium dysfunction, bloodbrain barrier leakage and the inflammatory response are traditionally considered to participate in the pathogenesis of CSVD. However, these features cannot fully explain the complex syndrome and related neuroimaging characteristics. In recent years, the glymphatic pathway has been discovered to play a pivotal role in clearing perivascular fluid and metabolic solutes, which has provided novel insights into neurological disorders. Researchers have also explored the potential role of perivascular clearance dysfunction in CSVD. In this review, we presented a brief overview of CSVD and the glymphatic pathway. In addition, we elucidated CSVD pathogenesis from the perspective of glymphatic failure, including basic animal models and clinical neuroimaging markers. Finally, we proposed forthcoming clinical applications targeting the glymphatic pathway, hoping to provide novel ideas on promising therapies and preventions of CSVD. </p>

          Related collections

          Most cited references166

          • Record: found
          • Abstract: found
          • Article: found

          Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration

          Summary Cerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have few or no symptoms. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive deficits, physical disabilities, and other symptoms of neurodegeneration. Terminology and definitions for imaging the features of SVD vary widely, which is also true for protocols for image acquisition and image analysis. This lack of consistency hampers progress in identifying the contribution of SVD to the pathophysiology and clinical features of common neurodegenerative diseases. We are an international working group from the Centres of Excellence in Neurodegeneration. We completed a structured process to develop definitions and imaging standards for markers and consequences of SVD. We aimed to achieve the following: first, to provide a common advisory about terms and definitions for features visible on MRI; second, to suggest minimum standards for image acquisition and analysis; third, to agree on standards for scientific reporting of changes related to SVD on neuroimaging; and fourth, to review emerging imaging methods for detection and quantification of preclinical manifestations of SVD. Our findings and recommendations apply to research studies, and can be used in the clinical setting to standardise image interpretation, acquisition, and reporting. This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.

            Because it lacks a lymphatic circulation, the brain must clear extracellular proteins by an alternative mechanism. The cerebrospinal fluid (CSF) functions as a sink for brain extracellular solutes, but it is not clear how solutes from the brain interstitium move from the parenchyma to the CSF. We demonstrate that a substantial portion of subarachnoid CSF cycles through the brain interstitial space. On the basis of in vivo two-photon imaging of small fluorescent tracers, we showed that CSF enters the parenchyma along paravascular spaces that surround penetrating arteries and that brain interstitial fluid is cleared along paravenous drainage pathways. Animals lacking the water channel aquaporin-4 (AQP4) in astrocytes exhibit slowed CSF influx through this system and a ~70% reduction in interstitial solute clearance, suggesting that the bulk fluid flow between these anatomical influx and efflux routes is supported by astrocytic water transport. Fluorescent-tagged amyloid β, a peptide thought to be pathogenic in Alzheimer's disease, was transported along this route, and deletion of the Aqp4 gene suppressed the clearance of soluble amyloid β, suggesting that this pathway may remove amyloid β from the central nervous system. Clearance through paravenous flow may also regulate extracellular levels of proteins involved with neurodegenerative conditions, its impairment perhaps contributing to the mis-accumulation of soluble proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sleep drives metabolite clearance from the adult brain.

              The conservation of sleep across all animal species suggests that sleep serves a vital function. We here report that sleep has a critical function in ensuring metabolic homeostasis. Using real-time assessments of tetramethylammonium diffusion and two-photon imaging in live mice, we show that natural sleep or anesthesia are associated with a 60% increase in the interstitial space, resulting in a striking increase in convective exchange of cerebrospinal fluid with interstitial fluid. In turn, convective fluxes of interstitial fluid increased the rate of β-amyloid clearance during sleep. Thus, the restorative function of sleep may be a consequence of the enhanced removal of potentially neurotoxic waste products that accumulate in the awake central nervous system.
                Bookmark

                Author and article information

                Contributors
                Journal
                Ageing Research Reviews
                Ageing Research Reviews
                Elsevier BV
                15681637
                April 2023
                April 2023
                : 86
                : 101885
                Article
                10.1016/j.arr.2023.101885
                36801378
                5b6014b4-1ead-4f6e-a71d-dcfeca24ed67
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article