9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Crossbreeding: implications for dairy cow fertility and survival

      , ,
      animal
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In pasture-based seasonal calving systems, failure to become pregnant during the breeding season results in important economic losses as maximum profit is attained by minimising costs and increasing the proportion of grass in the diet of the lactating dairy cow. In the United States, dairy producers primarily strive to maximise production potential but are becoming increasingly aware of the economic consequences of sub-optimal cow fertility and survival. For this reason, interest in crossbreeding is emerging. The objective of this paper is to review the fertility and survival outcomes reported from recent research studies and data analyses in Ireland, New Zealand and the United States. Research conducted in Ireland during the early 2000s concluded that of three ‘alternative’ dairy breeds the Norwegian Red was most suited to seasonal grass-based production. A key finding was favourable fertility and survival. A follow-up study confirmed a fertility advantage with Norwegian Red×Holstein-Friesian compared with Holstein-Friesian: proportion pregnant to first service; +0.08 and in-calf after 6 weeks breeding; +0.11. Another study found higher fertility with Jersey crossbreds: pregnant to first service; +0.21, and in-calf after 6 weeks breeding; +0.19. Studies conducted in Northern Ireland also found superior fertility performance with Jersey crossbred cows offered low and moderate concentrate diets. In New Zealand, crossbred dairy cattle (primarily Jersey×Friesian) are achieving similar rates of genetic gain for farm profit as the purebred populations, but creating additional gain derived from economic heterosis. In the United States, analysis of commercial data from California showed higher first-service conception rates for Scandinavian Red×Holstein (+6 percentage units) and Montbeliarde×Holstein (+10 percentage units) compared with Holstein (23%). They also exhibited fewer days open and greater survival. At Penn State University, Brown Swiss×Holstein cows had 17 fewer days open than Holstein cows during first lactation, and numerically fewer in second (12 days) and third lactation (6 days). At the University of Minnesota, crossbred cows had 21 percentage units higher first-service conception rates, 41 fewer days open and 12 percentage units higher in-calf rates compared with pure Holstein cows. They also had greater survival to second (+13 percentage units), third (+24 percentage units), fourth (+25 percentage units) and fifth (+17 percentage units) lactation. The literature clearly illustrates favourable animal performance benefits from crossbreeding, using a range of modern breeds, and within the context of both grass-based and high-input confinement production environments. Economic analyses generally indicate profitable performance owing to lower replacement cost and higher herd productivity.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Reproductive loss in high-producing dairy cattle: where will it end?

          M Lucy (2001)
          The dairy industry in the United States has changed dramatically in the last decade. Milk production per cow has increased steadily because of a combination of improved management, better nutrition, and intense genetic selection. Dairy farms are larger, and nearly 30% of the dairy cows in the United States are on farms with 500 or more cows. The shift toward more productive cows and larger herds is associated with a decrease in reproductive efficiency. Cows with the greatest milk production have the highest incidence of infertility, but epidemiological studies suggest that, in addition to milk production, other factors are probably decreasing reproductive efficiency in our dairy herds. The reproductive physiology of dairy cows has changed over the past 50 yr, and physiological adaptations to high milk production may explain part of the reproductive decline. Critical areas for new research include control of the estrous cycle, metabolic effects of lactation on reproduction, mechanisms linking disease to reproduction, and early embryonic mortality. Solving reproductive loss in dairy cows will not be easy because only a small number of research groups study reproduction in postpartum dairy cows. Therefore, the present research base will need to be expanded. For this to occur, research funding must be increased above its current level and a renewed emphasis must be placed on solving the emerging crisis of infertility in dairy cows.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development of a national genetic evaluation for cow fertility.

              A national fertility evaluation was developed based on pregnancy rate, which measures the percentage of nonpregnant cows becoming pregnant within each 21-d opportunity period. Data for evaluation are days open, which are calculated as date pregnant minus previous calving date. Date pregnant is determined from last reported breeding or from subsequent calving minus expected gestation length. Success or failure of last breeding can be confirmed by veterinary diagnosis or a report that the cow was sold because of infertility. Data are adjusted for parity and calving season within geographic region and time period and evaluated. Fertility records are considered complete at 250 d in milk, and lower and upper limits of 50 and 250 d are applied to days open. For calculation of genetic evaluations, days open are converted to pregnancy rate by the linear formula pregnancy rate = 0.25 (233 - days open). Evaluations are expressed as predicted transmitting ability for daughter pregnancy rate, and calculation is done with an animal model. Genetic correlations among several fertility measures and other evaluated traits were estimated from 3 large data sets. Correlation with days open was less for nonreturn rate than for days to first breeding, probably because nonreturn rate had lower heritability. Cow fertility was negatively correlated with yield but is a major component of longevity. Thus, recent selection for longevity may have slowed the long-term decline in fertility. Direct selection for fertility could halt or reverse the decline.
                Bookmark

                Author and article information

                Journal
                animal
                Animal
                Cambridge University Press (CUP)
                1751-7311
                1751-732X
                May 2014
                April 30 2014
                May 2014
                : 8
                : s1
                : 122-133
                Article
                10.1017/S1751731114000901
                5b5668c2-0527-4b72-b517-e5a4e09473f5
                © 2014

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article