0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Two sandwich-type uranyl-containing polytungstates catalyze aerobic synthesis of benzimidazoles

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The therapeutic journey of benzimidazoles: a review.

          Presence of benzimidazole nucleus in numerous categories of therapeutic agents such as antimicrobials, antivirals, antiparasites, anticancer, anti-inflammatory, antioxidants, proton pump inhibitors, antihypertensives, anticoagulants, immunomodulators, hormone modulators, CNS stimulants as well as depressants, lipid level modulators, antidiabetics, etc. has made it an indispensable anchor for development of new therapeutic agents. Varied substitutents around the benzimidazole nucleus have provided a wide spectrum of biological activities. Importance of this nucleus in some activities like, Angiotensin I (AT(1)) receptor antagonism and proton-pump inhibition is reviewed separately in literature. Even some very short reviews on biological importance of this nucleus are also known in literature. However, owing to fast development of new drugs possessing benzimidazole nucleus many research reports are generated in short span of time. So, there is a need to couple the latest information with the earlier information to understand the current status of benzimidazole nucleus in medicinal chemistry research. In the present review, various derivatives of benzimidazole with different pharmacological activities are described on the basis of substitution pattern around the nucleus with an aim to help medicinal chemists for developing an SAR on benzimidazole derived compounds for each activity. This discussion will further help in the development of novel benzimidazole compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Therapeutic evolution of benzimidazole derivatives in the last quinquennial period

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Pharmacological significance of heterocyclic 1 H -benzimidazole scaffolds: a review

              Heterocyclic compounds are inevitable in a numerous part of life sciences. These molecules perform various noteworthy functions in nature, medication and innovation. Nitrogen-containing heterocycles exceptionally azoles family are the matter of interest in synthesis attributable to the way that they happen pervasively in pharmacologically dynamic natural products, multipurpose arranged useful materials also profoundly powerful pharmaceuticals and agrochemicals. Benzimidazole moiety is the key building block for several heterocyclic scaffolds that play central role in the biologically functioning of essential molecules. They are considered as promising class of bioactive scaffolds encompassing diverse varieties of activities like antiprotozoal, antihelminthic, antimalarial, antiviral, anti-inflammatory, antimicrobial, anti-mycobacterial and antiparasitic. Therefore in the present review we tried to compile the various pharmacological activities of different derivatives of heterocyclic benzimidazole moiety.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Rare Metals
                Rare Met.
                Springer Science and Business Media LLC
                1001-0521
                1867-7185
                December 27 2023
                Article
                10.1007/s12598-023-02532-5
                5b26e71e-a405-4b95-901d-5935e579d8f3
                © 2023

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article