19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Origins of Combination Therapy for Tuberculosis: Lessons for Future Antimicrobial Development and Application

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Tuberculosis is a global health problem that causes the death of approximately 1.5 million people worldwide each year (WHO, p. 1–126, Global Tuberculosis Report, 2015). Treatment of drug-susceptible tuberculosis requires combination antimicrobial therapy with a minimum of four antimicrobial agents applied over the course of 6 months. The first instance of combination antimicrobial therapy applied to tuberculosis was the joint use of streptomycin and para-aminosalicylic acid as documented by the Medical Research Council of the United Kingdom in 1950. These antimicrobial drugs were the product of many decades of investigation into both organism-derived antibiotics and synthetic chemotherapy and were the first agents in those respective categories to show substantial clinical efficacy and widespread use for tuberculosis. The events leading to the discovery and application of these two agents demonstrate that investments in all aspects of research, from basic science to clinical application, are necessary for the continued success of science in finding treatments for human disease. This observation is especially worth considering given the expanded role that combination therapy may play in combating the current rise in resistance to antimicrobial drugs.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis.

          Although progress has been made to reduce global incidence of drug-susceptible tuberculosis, the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis during the past decade threatens to undermine these advances. However, countries are responding far too slowly. Of the estimated 440,000 cases of MDR tuberculosis that occurred in 2008, only 7% were identified and reported to WHO. Of these cases, only a fifth were treated according to WHO standards. Although treatment of MDR and XDR tuberculosis is possible with currently available diagnostic techniques and drugs, the treatment course is substantially more costly and laborious than for drug-susceptible tuberculosis, with higher rates of treatment failure and mortality. Nonetheless, a few countries provide examples of how existing technologies can be used to reverse the epidemic of MDR tuberculosis within a decade. Major improvements in laboratory capacity, infection control, performance of tuberculosis control programmes, and treatment regimens for both drug-susceptible and drug-resistant disease will be needed, together with a massive scale-up in diagnosis and treatment of MDR and XDR tuberculosis to prevent drug-resistant strains from becoming the dominant form of tuberculosis. New diagnostic tests and drugs are likely to become available during the next few years and should accelerate control of MDR and XDR tuberculosis. Equally important, especially in the highest-burden countries of India, China, and Russia, will be a commitment to tuberculosis control including improvements in national policies and health systems that remove financial barriers to treatment, encourage rational drug use, and create the infrastructure necessary to manage MDR tuberculosis on a national scale. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How many antibiotics are produced by the genus Streptomyces?

            Streptomyces is the largest antibiotic-producing genus in the microbial world discovered so far. The number of antimicrobial compounds reported from the species of this genus per year increased almost exponentially for about two decades, followed by a steady rise to reach a peak in the 1970s, and with a substantial decline in the late 1980s and 1990s. The cumulative number shows a sigmoid curve that is much flatter than what a logistic equation would predict. We attempted to fit a mathematical model to this curve in order to estimate the number of undiscovered antimicrobials from this genus as well as to predict the trends in the near future. A model assuming that the screening efforts are encouraged by a previous year's success and that the probability of finding a new antibiotic is a function of the fraction of antibiotics undiscovered so far offered a good fit after optimizing parameters. The model estimated the total number of antimicrobial compounds that this genus is capable of producing to be of the order of a 100,000 - a tiny fraction of which has been unearthed so far. The decline in the slope appeared to be due to a decline in screening efforts rather than an exhaustion of compounds. Left to itself, the slope will become zero in the next one or two decades, but if the screening efforts are maintained constant, the rate of discovery of new compounds will not decline for several decades to come.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial persistence and the road to drug resistance.

              Microbial drug persistence is a widespread phenomenon in which a subpopulation of microorganisms is able to survive antimicrobial treatment without acquiring resistance-conferring genetic changes. Microbial persisters can cause recurrent or intractable infections, and, like resistant mutants, they carry an increasing clinical burden. In contrast to heritable drug resistance, however, the biology of persistence is only beginning to be unraveled. Persisters have traditionally been thought of as metabolically dormant, nondividing cells. As discussed in this review, increasing evidence suggests that persistence is in fact an actively maintained state, triggered and enabled by a network of intracellular stress responses that can accelerate processes of adaptive evolution. Beyond shedding light on the basis of persistence, these findings raise the possibility that persisters behave as an evolutionary reservoir from which resistant organisms can emerge. As persistence and its consequences come into clearer focus, so too does the need for clinically useful persister-eradication strategies. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Invited Editor
                Role: Editor
                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                14 March 2017
                Mar-Apr 2017
                : 8
                : 2
                : e01586-16
                Affiliations
                [a ]Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
                [b ]Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, USA
                Harvard School of Public Health
                Harvard Medical School
                Author notes
                Address correspondence to William R. Jacobs, Jr., jacobsw@ 123456hhmi.org .
                Article
                mBio01586-16
                10.1128/mBio.01586-16
                5350467
                28292983
                5b1e96bb-ab46-4231-b6bf-cf5adfcc91de
                Copyright © 2017 Kerantzas and Jacobs.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 89, Pages: 10, Words: 7506
                Funding
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) https://doi.org/10.13039/100000060
                Award ID: A126170
                Award Recipient : William R. Jacobs
                Funded by: National Institutes of Health
                Award ID: AI26170
                Award ID: AI097548
                Award Recipient : WRJ
                Funded by: National Institutes of Health Medical Scientist Training Program
                Award ID: T32-GM007288
                Award Recipient : CAK
                Categories
                Minireview
                Custom metadata
                March/April 2017

                Life sciences
                Life sciences

                Comments

                Comment on this article