30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intracranial pressure monitoring: Gold standard and recent innovations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intracranial pressure monitoring (ICP) is based on the doctrine proposed by Monroe and Kellie centuries ago. With the advancement of technology and science, various invasive and non-invasive modalities of monitoring ICP continue to be developed. An ideal monitor to track ICP should be easy to use, accurate, reliable, reproducible, inexpensive and should not be associated with infection or haemorrhagic complications. Although the transducers connected to the extra ventricular drainage continue to be Gold Standard, its association with the likelihood of infection and haemorrhage have led to the search for alternate non-invasive methods of monitoring ICP. While Camino transducers, Strain gauge micro transducer based ICP monitoring devices and the Spiegelberg ICP monitor are the emerging technology in invasive ICP monitoring, optic nerve sheath diameter measurement, venous opthalmodynamometry, tympanic membrane displacement, tissue resonance analysis, tonometry, acoustoelasticity, distortion-product oto-acoustic emissions, trans cranial doppler, electro encephalogram, near infra-red spectroscopy, pupillometry, anterior fontanelle pressure monitoring, skull elasticity, jugular bulb monitoring, visual evoked response and radiological based assessment of ICP are the non-invasive methods which are assessed against the gold standard.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: found
          • Article: not found

          Decompressive craniectomy in diffuse traumatic brain injury.

          It is unclear whether decompressive craniectomy improves the functional outcome in patients with severe traumatic brain injury and refractory raised intracranial pressure. From December 2002 through April 2010, we randomly assigned 155 adults with severe diffuse traumatic brain injury and intracranial hypertension that was refractory to first-tier therapies to undergo either bifrontotemporoparietal decompressive craniectomy or standard care. The original primary outcome was an unfavorable outcome (a composite of death, vegetative state, or severe disability), as evaluated on the Extended Glasgow Outcome Scale 6 months after the injury. The final primary outcome was the score on the Extended Glasgow Outcome Scale at 6 months. Patients in the craniectomy group, as compared with those in the standard-care group, had less time with intracranial pressures above the treatment threshold (P<0.001), fewer interventions for increased intracranial pressure (P<0.02 for all comparisons), and fewer days in the intensive care unit (ICU) (P<0.001). However, patients undergoing craniectomy had worse scores on the Extended Glasgow Outcome Scale than those receiving standard care (odds ratio for a worse score in the craniectomy group, 1.84; 95% confidence interval [CI], 1.05 to 3.24; P=0.03) and a greater risk of an unfavorable outcome (odds ratio, 2.21; 95% CI, 1.14 to 4.26; P=0.02). Rates of death at 6 months were similar in the craniectomy group (19%) and the standard-care group (18%). In adults with severe diffuse traumatic brain injury and refractory intracranial hypertension, early bifrontotemporoparietal decompressive craniectomy decreased intracranial pressure and the length of stay in the ICU but was associated with more unfavorable outcomes. (Funded by the National Health and Medical Research Council of Australia and others; DECRA Australian Clinical Trials Registry number, ACTRN012605000009617.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A trial of intracranial-pressure monitoring in traumatic brain injury.

            Intracranial-pressure monitoring is considered the standard of care for severe traumatic brain injury and is used frequently, but the efficacy of treatment based on monitoring in improving the outcome has not been rigorously assessed. We conducted a multicenter, controlled trial in which 324 patients 13 years of age or older who had severe traumatic brain injury and were being treated in intensive care units (ICUs) in Bolivia or Ecuador were randomly assigned to one of two specific protocols: guidelines-based management in which a protocol for monitoring intraparenchymal intracranial pressure was used (pressure-monitoring group) or a protocol in which treatment was based on imaging and clinical examination (imaging-clinical examination group). The primary outcome was a composite of survival time, impaired consciousness, and functional status at 3 months and 6 months and neuropsychological status at 6 months; neuropsychological status was assessed by an examiner who was unaware of protocol assignment. This composite measure was based on performance across 21 measures of functional and cognitive status and calculated as a percentile (with 0 indicating the worst performance, and 100 the best performance). There was no significant between-group difference in the primary outcome, a composite measure based on percentile performance across 21 measures of functional and cognitive status (score, 56 in the pressure-monitoring group vs. 53 in the imaging-clinical examination group; P=0.49). Six-month mortality was 39% in the pressure-monitoring group and 41% in the imaging-clinical examination group (P=0.60). The median length of stay in the ICU was similar in the two groups (12 days in the pressure-monitoring group and 9 days in the imaging-clinical examination group; P=0.25), although the number of days of brain-specific treatments (e.g., administration of hyperosmolar fluids and the use of hyperventilation) in the ICU was higher in the imaging-clinical examination group than in the pressure-monitoring group (4.8 vs. 3.4, P=0.002). The distribution of serious adverse events was similar in the two groups. For patients with severe traumatic brain injury, care focused on maintaining monitored intracranial pressure at 20 mm Hg or less was not shown to be superior to care based on imaging and clinical examination. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT01068522.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis.

              To evaluate the diagnostic accuracy of ultrasonography of optic nerve sheath diameter (ONSD) for assessment of intracranial hypertension. Systematic review without language restriction based on electronic databases, with manual review of literature and conference proceedings until July 2010. Studies were eligible if they compared ultrasonography of ONSD with intracranial pressure (ICP) monitoring. Data were extracted independently by three authors. Random-effects meta-analysis and meta-regression were performed. Six studies including 231 patients were reviewed. No significant heterogeneity was detected for sensitivity, specificity, positive and negative likelihood ratios or diagnostic odds ratio. For detection of raised intracranial pressure, pooled sensitivity was 0.90 [95% confidence interval (CI) 0.80-0.95; p for heterogeneity, p (het) = 0.09], pooled specificity was 0.85 (95% CI 0.73-0.93, p (het) = 0.13), and the pooled diagnostic odds ratio was 51 (95% CI 22-121). The area under the summary receiver-operating characteristic (SROC) curve was 0.94 (95% CI 0.91-0.96). Ultrasonography of ONSD shows a good level of diagnostic accuracy for detecting intracranial hypertension. In clinical decision-making, this technique may help physicians decide to transfer patients to specialized centers or to place an invasive device when specific recommendations for this placement do not exist.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Clin Cases
                WJCC
                World Journal of Clinical Cases
                Baishideng Publishing Group Inc
                2307-8960
                06 July 2019
                06 July 2019
                : 7
                : 13
                : 1535-1553
                Affiliations
                Department of Anaesthesiology and Critical Care, Tata Main Hospital, Jamshedpur 831001, India. debsanjay@ 123456gmail.com
                Department of Anaesthesiology and Critical Care, Tata Main Hospital, Jamshedpur 831001, India
                Department of Anaesthesiology and Critical Care, Tata Main Hospital, Jamshedpur 831001, India
                Department of Anaesthesiology and Critical Care, Tata Main Hospital, Jamshedpur 831001, India
                Author notes

                Author contributions: Nag DS, Sahu S, Swain A and Shashi Kant S were involved in conceptualization, research and drafting the review. All authors are responsible for critical revision, editing and final approval of the submitted version.

                Corresponding author: Deb Sanjay Nag, MBBS, MD, Doctor, Consultant, Department of Anaesthesiology, Tata Main Hospital, C Road West, Northern Town, Bistupur, Jamshedpur 831011, India. debsanjay@ 123456gmail.com

                Telephone: +91-94-31166582 Fax: +91-657-2224559

                Article
                jWJCC.v7.i13.pg1535
                10.12998/wjcc.v7.i13.1535
                6658373
                31367614
                5b17a2aa-3aab-4ca3-9ac5-5e2ff6169c6e
                ©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 4 March 2019
                : 11 May 2019
                : 23 May 2019
                Categories
                Review

                intracranial pressure increase,craniocerebral trauma,subarachnoid hemorrhages

                Comments

                Comment on this article