6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Short-chain fatty acids of various lengths differentially inhibit Klebsiella pneumoniae and Enterobacteriaceae species

      research-article
      1 , 1 , 2 , 3 ,
      mSphere
      American Society for Microbiology
      Klebsiella pneumoniae, colonization, short-chain fatty acids, Enterobacteriaceae, intestine, bacteriostatic

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The gut microbiota is inextricably linked to human health and disease. It can confer colonization resistance against invading pathogens either through niche occupation and nutrient competition or via its secreted metabolites. Short-chain fatty acids (SCFA) are the primary metabolites in the gut as a result of dietary fiber fermentation by the gut microbiota. In this work, we demonstrate that the interaction of single-species gut commensals on solid media is insufficient for pathogen inhibition, but supernatants from monocultures of these commensal bacteria enriched in acetate confer inhibition against anaerobic growth of the enteric pathogen Klebsiella pneumoniae. The three primary SCFAs (acetate, propionate, and butyrate) strongly inhibit the intestinal commensal Escherichia coli Nissle as well as a panel of enteric pathogens besides K. pneumoniae at physiological pH of the cecum and ascending colon. This inhibition was significantly milder on anaerobic gut commensals Bacteroides thetaiotaomicron and Bifidobacterium adolescentis previously demonstrated to be associated with microbiota recovery after antibiotic-induced dysbiosis. We describe a general suppression of bacterial membrane potential by these SCFAs at physiological cecum and ascending colonic pH. Furthermore, the strength of bacterial inhibition increases with increasing alkyl chain length. Overall, the insights gained in this study shed light on the potential therapeutic use of SCFAs for conferring colonization resistance against invading pathogens in a dysbiotic gut.

          IMPORTANCE

          Rising antimicrobial resistance has made treatment of bacterial infections increasingly difficult. According to the World Health Organization, it has become a burgeoning threat to hospital and public health systems worldwide. This threat is largely attributed to the global rise of carbapenem-resistant Enterobacteriaceae in recent years, with common hospital-acquired pathogens growing increasingly resistant to last-line antibiotics. Antibiotics disrupt the homeostatic balance of the gut microbiota, resulting in the loss of colonization resistance against enteric pathogens. This work describes the ability of short-chain fatty acids (SCFAs) produced by gut microbiota to be effective against a wide panel of enteric pathogens without major impact on common gut commensal species. We also demonstrate a previously undescribed link between alkyl chain length and antibacterial effects of SCFAs. SCFAs, thus, hold promise as an alternative therapeutic option leveraging on the antimicrobial activity of these endogenously produced gut metabolites without disrupting gut microbiota homeostasis.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases

          Ulcerative colitis (UC) and Crohn's disease (CD), collectively known as Inflammatory Bowel Diseases (IBD), are caused by a complex interplay between genetic, immunologic, microbial and environmental factors. Dysbiosis of the gut microbiome is increasingly considered to be causatively related to IBD and is strongly affected by components of a Western life style. Bacteria that ferment fibers and produce short chain fatty acids (SCFAs) are typically reduced in mucosa and feces of patients with IBD, as compared to healthy individuals. SCFAs, such as acetate, propionate and butyrate, are important metabolites in maintaining intestinal homeostasis. Several studies have indeed shown that fecal SCFAs levels are reduced in active IBD. SCFAs are an important fuel for intestinal epithelial cells and are known to strengthen the gut barrier function. Recent findings, however, show that SCFAs, and in particular butyrate, also have important immunomodulatory functions. Absorption of SCFAs is facilitated by substrate transporters like MCT1 and SMCT1 to promote cellular metabolism. Moreover, SCFAs may signal through cell surface G-protein coupled receptors (GPCRs), like GPR41, GPR43, and GPR109A, to activate signaling cascades that control immune functions. Transgenic mouse models support the key role of these GPCRs in controlling intestinal inflammation. Here, we present an overview of microbial SCFAs production and their effects on the intestinal mucosa with specific emphasis on their relevance for IBD. Moreover, we discuss the therapeutic potential of SCFAs for IBD, either applied directly or by stimulating SCFAs-producing bacteria through pre- or probiotic approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.

            Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont.

              The distal human gut is a microbial bioreactor that digests complex carbohydrates. The strategies evolved by gut microbes to sense and process diverse glycans have important implications for the assembly and operation of this ecosystem. The human gut-derived bacterium Bacteroides thetaiotaomicron forages on both host and dietary glycans. Its ability to target these substrates resides in 88 polysaccharide utilization loci (PULs), encompassing 18% of its genome. Whole genome transcriptional profiling and genetic tests were used to define the mechanisms underlying host glycan foraging in vivo and in vitro. PULs that target all major classes of host glycans were identified. However, mucin O-glycans are the principal host substrate foraged in vivo. Simultaneous deletion of five genes encoding ECF-sigma transcription factors, which activate mucin O-glycan utilization, produces defects in bacterial persistence in the gut and in mother-to-offspring transmission. Thus, PUL-mediated glycan catabolism is an important component in gut colonization and may impact microbiota ecology.
                Bookmark

                Author and article information

                Contributors
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – original draftRole: Writing – review and editing
                Role: ResourcesRole: Writing – review and editing
                Role: Editor
                Journal
                mSphere
                mSphere
                msphere
                mSphere
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5042
                February 2024
                02 February 2024
                02 February 2024
                : 9
                : 2
                : e00781-23
                Affiliations
                [1 ]Yong Loo Lin School of Medicine, National University of Singapore; , Singapore, Singapore
                [2 ]Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR); , Singapore, Singapore
                [3 ]Department of Biochemistry, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore; , Singapore, Singapore
                University of Michigan-Ann Arbor; , Ann Arbor, Michigan, USA
                Author notes
                Address correspondence to Yunn-Hwen Gan, bchganyh@ 123456nus.edu.sg

                The authors declare no conflict of interest.

                Author information
                https://orcid.org/0009-0005-1862-9557
                https://orcid.org/0000-0001-9881-6881
                Article
                00781-23 msphere.00781-23
                10.1128/msphere.00781-23
                10900885
                38305176
                5ae04be0-8a90-46f5-914e-d56b9beb25f2
                Copyright © 2024 Chang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 15 December 2023
                : 04 January 2024
                Page count
                supplementary-material: 0, authors: 3, Figures: 7, Tables: 2, References: 49, Pages: 18, Words: 8929
                Funding
                Funded by: MOH | National Medical Research Council (NMRC);
                Award ID: OFLCG22may-0009
                Award Recipient :
                Funded by: National University of Singapore (NUS);
                Award ID: Reimagine Type I Fund (A-0002500-00-00)
                Award Recipient :
                Categories
                Research Article
                bacteriology, Bacteriology
                Custom metadata
                February 2024

                klebsiella pneumoniae,colonization,short-chain fatty acids,enterobacteriaceae,intestine,bacteriostatic

                Comments

                Comment on this article