3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Graphene‐Based Opto‐Thermoelectric Tweezers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          Optical Constants of the Noble Metals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fine structure constant defines visual transparency of graphene.

            There are few phenomena in condensed matter physics that are defined only by the fundamental constants and do not depend on material parameters. Examples are the resistivity quantum, h/e2 (h is Planck's constant and e the electron charge), that appears in a variety of transport experiments and the magnetic flux quantum, h/e, playing an important role in the physics of superconductivity. By and large, sophisticated facilities and special measurement conditions are required to observe any of these phenomena. We show that the opacity of suspended graphene is defined solely by the fine structure constant, a = e2/hc feminine 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science. Despite being only one atom thick, graphene is found to absorb a significant (pa = 2.3%) fraction of incident white light, a consequence of graphene's unique electronic structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Superior thermal conductivity of single-layer graphene.

              We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range approximately (4.84+/-0.44)x10(3) to (5.30+/-0.48)x10(3) W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Advanced Materials
                Wiley
                0935-9648
                1521-4095
                February 2022
                January 15 2022
                February 2022
                : 34
                : 8
                : 2107691
                Affiliations
                [1 ]Nanophotonics Research Center Shenzhen Key Laboratory of Micro‐Scale Optical Information Technology & Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
                Article
                10.1002/adma.202107691
                5abfd9c6-9e50-4a34-91f9-160ec53ceb2a
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article