38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High bone mass is associated with an increased prevalence of joint replacement: a case–control study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective. Epidemiological studies have shown an association between OA and increased BMD. To explore the nature of this relationship, we examined whether the risk of OA is increased in individuals with high bone mass (HBM), in whom BMD is assumed to be elevated due to a primary genetic cause.

          Methods. A total of 335 115 DXA scans were screened to identify HBM index cases (defined by DXA scan as an L1 Z-score of ≥+3.2 and total hip Z-score ≥+1.2, or total hip Z-score ≥+3.2 and L1 Z-score ≥+1.2). In relatives, the definition of HBM was L1 Z-score plus total hip Z-score ≥+3.2. Controls comprised unaffected relatives and spouses. Clinical indicators of OA were determined by structured assessment. Analyses used logistic regression adjusting for age, gender, BMI and social deprivation.

          Results. A total of 353 HBM cases (mean age 61.7 years, 77% female) and 197 controls (mean age 54.1 years, 47% female) were included. Adjusted NSAID use was more prevalent in HBM cases versus controls [odds ratio (OR) 2.17 (95% CI 1.10, 4.28); P = 0.03]. The prevalence of joint replacement was higher in HBM cases (13.0%) than controls (4.1%), with an adjusted OR of 2.42 (95% CI 1.06, 5.56); P = 0.04. Adjusted prevalence of joint pain and knee crepitus did not differ between cases and controls.

          Conclusion. HBM is associated with increased prevalence of joint replacement surgery and NSAID use compared with unaffected controls.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoarthritis: epidemiology.

          Osteoarthritis (OA) is the most common joint disorder in the world. In Western populations it is one of the most frequent causes of pain, loss of function and disability in adults. Radiographic evidence of OA occurs in the majority of people by 65 years of age and in about 80% of those aged over 75 years. In the US it is second only to ischaemic heart disease as a cause of work disability in men over 50 years of age, and accounts for more hospitalizations than rheumatoid arthritis (RA) each year. Despite this public health impact, OA remains an enigmatic condition to the epidemiologist. In this chapter, we will review the definition and classification of OA, its prevalence, incidence, risk factors and natural history.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait.

            Osteoporosis is a complex disease that affects >10 million people in the United States and results in 1.5 million fractures annually. In addition, the high prevalence of osteopenia (low bone mass) in the general population places a large number of people at risk for developing the disease. In an effort to identify genetic factors influencing bone density, we characterized a family that includes individuals who possess exceptionally dense bones but are otherwise phenotypically normal. This high-bone-mass trait (HBM) was originally localized by linkage analysis to chromosome 11q12-13. We refined the interval by extending the pedigree and genotyping additional markers. A systematic search for mutations that segregated with the HBM phenotype uncovered an amino acid change, in a predicted beta-propeller module of the low-density lipoprotein receptor-related protein 5 (LRP5), that results in the HBM phenotype. During analysis of >1,000 individuals, this mutation was observed only in affected individuals from the HBM kindred. By use of in situ hybridization to rat tibia, expression of LRP5 was detected in areas of bone involved in remodeling. Our findings suggest that the HBM mutation confers a unique osteogenic activity in bone remodeling, and this understanding may facilitate the development of novel therapies for the treatment of osteoporosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice.

              Osteoarthritis (OA) is a degenerative joint disease, and the mechanism of its pathogenesis is poorly understood. Recent human genetic association studies showed that mutations in the Frzb gene predispose patients to OA, suggesting that the Wnt/beta-catenin signaling may be the key pathway to the development of OA. However, direct genetic evidence for beta-catenin in this disease has not been reported. Because tissue-specific activation of the beta-catenin gene (targeted by Col2a1-Cre) is embryonic lethal, we specifically activated the beta-catenin gene in articular chondrocytes in adult mice by generating beta-catenin conditional activation (cAct) mice through breeding of beta-catenin(fx(Ex3)/fx(Ex3)) mice with Col2a1-CreER(T2) transgenic mice. Deletion of exon 3 of the beta-catenin gene results in the production of a stabilized fusion beta-catenin protein that is resistant to phosphorylation by GSK-3beta. In this study, tamoxifen was administered to the 3- and 6-mo-old Col2a1-CreER(T2);beta-catenin(fx(Ex3)/wt) mice, and tissues were harvested for histologic analysis 2 mo after tamoxifen induction. Overexpression of beta-catenin protein was detected by immunostaining in articular cartilage tissues of beta-catenin cAct mice. In 5-mo-old beta-catenin cAct mice, reduction of Safranin O and Alcian blue staining in articular cartilage tissue and reduced articular cartilage area were observed. In 8-mo-old beta-catenin cAct mice, cell cloning, surface fibrillation, vertical clefting, and chondrophyte/osteophyte formation were observed. Complete loss of articular cartilage layers and the formation of new woven bone in the subchondral bone area were also found in beta-catenin cAct mice. Expression of chondrocyte marker genes, such as aggrecan, Mmp-9, Mmp-13, Alp, Oc, and colX, was significantly increased (3- to 6-fold) in articular chondrocytes derived from beta-catenin cAct mice. Bmp2 but not Bmp4 expression was also significantly upregulated (6-fold increase) in these cells. In addition, we also observed overexpression of beta-catenin protein in the knee joint samples from patients with OA. These findings indicate that activation of beta-catenin signaling in articular chondrocytes in adult mice leads to the premature chondrocyte differentiation and the development of an OA-like phenotype. This study provides direct and definitive evidence about the role of beta-catenin in the development of OA.
                Bookmark

                Author and article information

                Journal
                Rheumatology (Oxford)
                Rheumatology (Oxford)
                brheum
                rheumatology
                Rheumatology (Oxford, England)
                Oxford University Press
                1462-0324
                1462-0332
                June 2013
                28 January 2013
                28 January 2013
                : 52
                : 6
                : 1042-1051
                Affiliations
                1Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol, 2MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, 3School of Social and Community Medicine, University of Bristol, Bristol, 4MRC Centre for Causal Analyses in Translational Epidemiology, University of Bristol, Bristol and 5University of Exeter Medical School, Exeter, UK.
                Author notes
                Correspondence to: Sarah A. Hardcastle, Musculoskeletal Research Unit, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK. E-mail: sarah.hardcastle@ 123456bristol.ac.uk
                Article
                kes411
                10.1093/rheumatology/kes411
                3651613
                23362220
                5ab72854-f8c6-4fd0-b3bd-bce2c1bfe42e
                © The Author 2013. Published by Oxford University Press on behalf of the British Society for Rheumatology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 September 2012
                : 5 December 2012
                Page count
                Pages: 10
                Categories
                Clinical Science

                Rheumatology
                osteoarthritis,high bone mass,bone mineral density,dxa,joint replacement
                Rheumatology
                osteoarthritis, high bone mass, bone mineral density, dxa, joint replacement

                Comments

                Comment on this article