42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Potatoes and Human Health

      1 , 2 , 3
      Critical Reviews in Food Science and Nutrition
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The potato (Solanum tuberosum L.) tuber follows only rice and wheat in world importance as a food crop for human consumption. Cultivated potatoes have spread from the Andes of South America where they originated to 160 countries around the world. Consumption of fresh potatoes has declined while processed products have increased in popularity. As the potato becomes a staple in the diets of an increasing number of humans, small differences in potato nutritional composition will have major impacts on population health. The potato is a carbohydrate-rich, energy-providing food with little fat. Potato protein content is fairly low but has an excellent biological value of 90-100. Potatoes are particularly high in vitamin C and are a good source of several B vitamins and potassium. The skins provide substantial dietary fiber. Many compounds in potatoes contribute to antioxidant activity and interest in cultivars with pigmented flesh is growing. This review will examine the nutrient and bioactive compounds in potatoes and their impact on human health.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: not found
          • Article: not found

          Physiology and Molecular Biology of Phenylpropanoid Metabolism

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biofortifying crops with essential mineral elements.

            Humans require more than 22 mineral elements, which can all be supplied by an appropriate diet. However, the diets of populations subsisting on cereals, or inhabiting regions where soil mineral imbalances occur, often lack Fe, Zn, Ca, Mg, Cu, I or Se. Traditional strategies to deliver these minerals to susceptible populations have relied on supplementation or food fortification programs. Unfortunately, these interventions have not always been successful. An alternative solution is to increase mineral concentrations in edible crops. This is termed 'biofortification'. It can be achieved by mineral fertilization or plant breeding. There is considerable genetic variation in crop species that can be harnessed for sustainable biofortification strategies. Varieties with increased mineral concentrations in their edible portions are already available, and new genotypes with higher mineral densities are being developed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Potato glycoalkaloids and metabolites: roles in the plant and in the diet.

              Potatoes, members of the Solanaceae plant family, serve as major, inexpensive low-fat food sources providing energy (starch), high-quality protein, fiber, and vitamins. Potatoes also produce biologically active secondary metabolites, which may have both adverse and beneficial effects in the diet. These include glycoalkaloids, calystegine alkaloids, protease inhibitors, lectins, phenolic compounds, and chlorophyll. Because glycoalkaloids are reported to be involved in host-plant resistance and to have a variety of adverse as well as beneficial effects in cells, animals, and humans, a need exists to develop a clearer understanding of their roles both in the plant and in the diet. To contribute to this effort, this integrated review presents data on the (a) history of glycoalkaloids; (b) glycoalkaloid content in different parts of the potato plant, in processed potato products, and in wild, transgenic, and organic potatoes; (c) biosynthesis, inheritance, plant molecular biology, and glycoalkaloid-plant phytopathogen relationships; (d) dietary significance with special focus on the chemistry, analysis, and nutritional quality of low-glycoalkaloid potato protein; (e) pharmacology and toxicology of the potato glycoalkaloids comprising alpha-chaconine and alpha-solanine and their hydrolysis products (metabolites); (f) anticarcinogenic and other beneficial effects; and (g) possible dietary consequences of concurrent consumption of glycoalkaloids and other biologically active compounds present in fresh and processed potatoes. An enhanced understanding of the multiple and overlapping aspects of glycoalkaloids in the plant and in the diet will benefit producers and consumers of potatoes.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Food Science and Nutrition
                Critical Reviews in Food Science and Nutrition
                Informa UK Limited
                1040-8398
                1549-7852
                December 02 2009
                December 10 2009
                December 02 2009
                December 10 2009
                : 49
                : 10
                : 823-840
                Affiliations
                [1 ]a Department of Food Science & Human Nutrition , University of Maine , USA
                [2 ]b School of Dietetics & Human Nutrition , McGill University , QC, Canada
                [3 ]c Plant Science Department , McGill University , QC, Canada
                Article
                10.1080/10408390903041996
                19960391
                5aac1140-aed9-43d9-a03c-eb043e2d1064
                © 2009
                History

                Comments

                Comment on this article