13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Myofibroblast differentiation and its functional properties are inhibited by nicotine and e-cigarette via mitochondrial OXPHOS complex III

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nicotine is the major stimulant in tobacco products including e-cigarettes. Fibroblast to myofibroblast differentiation is a key process during wound healing and is dysregulated in lung diseases. The role of nicotine and e-cigarette derived nicotine on cellular functions including profibrotic response and other functional aspects is not known. We hypothesized that nicotine and e-cigarettes affect myofibroblast differentiation, gel contraction, and wound healing via mitochondria stress through nicotinic receptor-dependent mechanisms. To test the hypothesis, we exposed human lung fibroblasts with various doses of nicotine and e-cigarette condensate and determined myofibroblast differentiation, mitochondrial oxidative phosphorylation (OXPHOS), wound healing, and gel contraction at different time points. We found that both nicotine and e-cigarette inhibit myofibroblast differentiation as shown by smooth muscle actin and collagen type I, alpha 1 abundance. Nicotine and e-cigarette inhibited OXPHOS complex III accompanied by increased MitoROS, and this effect was augmented by complex III inhibitor antimycin A. These mitochondrial associated effects by nicotine resulted in inhibition of myofibroblast differentiation. These effects were associated with inhibition of wound healing and gel contraction suggesting that nicotine is responsible for dysregulated repair during injurious responses. Thus, our data suggest that nicotine causes dysregulated repair by inhibition of myofibroblast differentiation via OXPHOS pathway.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling.

          TGF-β signaling is required for normal tissue repair; however, excessive TGF-β signaling can lead to robust profibrotic gene expression in fibroblasts, resulting in tissue fibrosis. TGF-β binds to cell-surface receptors, resulting in the phosphorylation of the Smad family of transcription factors to initiate gene expression. TGF-β also initiates Smad-independent pathways, which augment gene expression. Here, we report that mitochondrial reactive oxygen species (ROS) generated at complex III are required for TGF-β-induced gene expression in primary normal human lung fibroblasts. TGF-β-induced ROS could be detected in both the mitochondrial matrix and cytosol. Mitochondrially targeted antioxidants markedly attenuated TGF-β-induced gene expression without affecting Smad phosphorylation or nuclear translocation. Genetically disrupting mitochondrial complex III-generated ROS production attenuated TGF-β-induced profibrotic gene expression. Furthermore, inhibiting mitochondrial ROS generation attenuated NOX4 (NADPH oxidase 4) expression, which is required for TGF-β induced myofibroblast differentiation. Lung fibroblasts from patients with pulmonary fibrosis generated more mitochondrial ROS than normal human lung fibroblasts, and mitochondrially targeted antioxidants attenuated profibrotic gene expression in both normal and fibrotic lung fibroblasts. Collectively, our results indicate that mitochondrial ROS are essential for normal TGF-β-mediated gene expression and that targeting mitochondrial ROS might be beneficial in diseases associated with excessive fibrosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria.

            Electronic (e)-cigarette use is rapidly rising, with 20 % of Americans ages 25-44 now using these drug delivery devices. E-cigarette users expose their airways, cells of host defense, and colonizing bacteria to e-cigarette vapor (EV). Here, we report that exposure of human epithelial cells at the air-liquid interface to fresh EV (vaped from an e-cigarette device) resulted in dose-dependent cell death. After exposure to EV, cells of host defense-epithelial cells, alveolar macrophages, and neutrophils-had reduced antimicrobial activity against Staphylococcus aureus (SA). Mouse inhalation of EV for 1 h daily for 4 weeks led to alterations in inflammatory markers within the airways and elevation of an acute phase reactant in serum. Upon exposure to e-cigarette vapor extract (EVE), airway colonizer SA had increased biofilm formation, adherence and invasion of epithelial cells, resistance to human antimicrobial peptide LL-37, and up-regulation of virulence genes. EVE-exposed SA were more virulent in a mouse model of pneumonia. These data suggest that e-cigarettes may be toxic to airway cells, suppress host defenses, and promote inflammation over time, while also promoting virulence of colonizing bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transforming Growth Factor-β: Master Regulator of the Respiratory System in Health and Disease.

              In this article, we review the biology and physiological importance of transforming growth factor-β (TGF-β) to homeostasis in the respiratory system, its importance to innate and adaptive immune responses in the lung, and its pathophysiological role in various chronic pulmonary diseases including pulmonary arterial hypertension, chronic obstructive pulmonary disease, asthma, and pulmonary fibrosis. The TGF-β family is responsible for initiation of the intracellular signaling pathways that direct numerous cellular activities including proliferation, differentiation, extracellular matrix synthesis, and apoptosis. When TGF-β signaling is dysregulated or essential control mechanisms are unbalanced, the consequences of organ and tissue dysfunction can be profound. The complexities and myriad checkpoints built into the TGF-β signaling pathways provide attractive targets for the treatment of these disease states, many of which are currently being investigated. This review focuses on those aspects of TGF-β biology that are most relevant to pulmonary diseases and that hold promise as novel therapeutic targets.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                03 March 2017
                2017
                : 7
                : 43213
                Affiliations
                [1 ]Department of Environmental Medicine, University of Rochester Medical Center , Rochester, NY, USA
                [2 ]Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University , Suzhou, Jiangsu, 215006, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep43213
                10.1038/srep43213
                5335673
                28256533
                5a6ecdb3-a598-4538-bb3f-46c031d8bacd
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 22 July 2016
                : 20 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article