7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          UCSF Chimera--a visualization system for exploratory research and analysis.

          The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/. Copyright 2004 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteomics. Tissue-based map of the human proteome.

            Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body. Copyright © 2015, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy

              MotionCor2 software corrects for beam-induced sample motion, improving the resolution of cryo-EM reconstructions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                March 2022
                March 2022
                : 185
                : 6
                : 980-994.e15
                Article
                10.1016/j.cell.2022.02.010
                35303428
                5a6bd5db-848c-4a07-af6c-c0f2710a52f2
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article